Accident: Helium leak halts CERN facility tests; root cause

Arc flash punctures a cryogenic tank, damages steering and focusing magnets, and contaminates beamline. Could this fall CERN accident have been prevented? See details, photo.


Geneva, Switzerland — What were the details and cause of the fall accident at CERN? Might it have been prevented? On Sept. 19, 2008, only nine days after proton beams were first circulated at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), a fault occurred resulting in mechanical damage and release of helium. A recently released investigators' report
(Review other Control Engineering CERN references and articles .)

Superconducting quadrupole electromagnets direct protons beams to four intersection points, says Wikipedia.
Superconducting quadrupole electromagnets direct protons beams to four intersection points, where interactions between protons take place. Source: Wikipedia; .

LHC is a dual-beam synchrotron designed to accelerate protons to a kinetic energy of 7 TeV (1 TeV = 10^12 electron volts). When the beams intersect, protons collide with relative energies of 14 TeV. Superconducting magnets immersed in vaccum-insulated liquid helium tanks ( Dewars ) at an operating temperature of 1.9 K turn the beams to follow a circular tunnel with a circumference of 27 kilometres (17 mi) at a depth ranging from 50 to 175 metres underground, and to keep the beams focused. Two types of magnets are used: 1,232 dipole magnets keep the beams on their circular path, while an additional 392 quadrupole magnets keep the beams focused.
The incident occurred approximately 2 months before the facility’s planned winter shutdown, scheduled for November 2008, leaving insufficient time to repair the damage and put the facility back in operation. Repairs will be carried through the shutdown period and the facility will be operational in time to resume operations in spring 2009.
Inincident in the future are being put in place.
"This incident was unforeseen," said CERN director general Robert Aymar, "but I am now confident that we can make the necessary repairs, ensure that a similar incident can not happen in the future, and move forward to achieving our research objectives."
During power-up tests of the main dipole circuit, a fault occurred in the electrical bus connection in the region between a dipole and a quadrupole, resulting in mechanical damage and release of helium from the magnet cold mass into the tunnel. Proper safety procedures were in force, the safety systems performed as expected, and no-one was put at risk, investigators report.
During the ramping-up of current in the main dipole circuit at the nominal rate of 10 A/s, a resistive zone developed, leading in less than one second to a resistive voltage of 1 V at 9 kA. Unable to maintain the current ramp, the power supply tripped off and the energy discharge-switch opened, inserting dump resistors into the circuit to produce a fast current decrease. In this sequence of events, the quench detection, power converter, and energy discharge systems behaved as expected.
Within one second, an electrical arc developed, puncturing the helium enclosure and leading to a release of helium into the insulation vacuum of the cryostat. After 3 and 4 seconds, the beam vacuum also degraded in beam pipes 2 and 1, respectively. Then the insulation vacuum started to degrade in the two neighboring subsectors.
Spring-loaded relief discs on the vacuum enclosure opened when the pressure exceeded atmospheric, releasing helium into the tunnel. The relief valves were unable to contain the pressure rise below the nominal 0.15 MPa in the vacuum enclosure of the central subsector, thus resulting in large pressure forces acting on the vacuum barriers separating the central subsector from the neighboring subsectors.
After restoring power and services in the tunnel and ensuring mechanical stability of the magnets, the investigation teams proceeded to open up the cryostat sleeves in the interconnections between magnets, starting from the central subsector. This confirmed the location of the electrical arc, showed absence of electrical and mechanical damage in neighboring interconnections, but revealed contamination by soot-like dust, which propagated over some distance in the beam pipes. It also showed damage to the multilayer insulation blankets of the cryostats.
The forces on the vacuum barriers attached to the quadrupoles at the subsector ends were such that the cryostats housing these quadrupoles broke their anchors in the concrete floor of the tunnel and were moved away from their original positions, with electric and fluid connections pulling the dipole cold masses in the subsector from their internal supports inside their undisplaced cryostats. The displacement of the quadrupoles’ cryostats damaged "jumper" connections to the cryogenic distribution line, but did not rupture its insulation vacuum.
Pending further inspection of the inside of the dipole cryostats, investigators estimate that at most 5 quadrupoles and 24 dipoles from the three subsectors were involved, but it is possible that more magnets will have to be removed from the tunnel for cleaning and exchange of multilayer insulation. Spare magnets and spare components appear to be available in adequate types and sufficient quantities to allow replacement of the damaged ones during the forthcoming shutdown.
The extent of contamination to the beam vacuum pipes is not yet fully mapped, but is known to be limited; in situ cleaning is being considered to keep the number of magnets to be removed to a minimum. Removal/reinstallation, transport and repair of magnets will be integrated with the maintenance and consolidation work to be performed during the winter shutdown across the CERN facility.
C.G. Masi , senior editor
Control Engineering News Desk
Register here and scroll down to select your choice of free eNewsletters .

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me