NFPA 99: New healthcare facility code requirements

The National Fire Protection Assn. sets forth the criteria to minimize the hazards of fire, explosion, and electricity in healthcare facilities providing services to human beings.


Healthcare facilities contain a multitude of complex systems that all play varying roles in the provision of patient care and the protection of a building and its occupants. Since 1984, NFPA 99 has been a consolidated source for guidance on minimizing the hazards of fire, explosion, and electricity in healthcare facilities providing services to human beings. NFPA 99-2012: Health Care Facilities Code represents a significant rewrite of its 7-year-old predecessor document, NFPA 99-2005: Standard for Health Care Facilities. This extended revision cycle is indicative of the immense effort that has been put into the latest edition. This article highlights the changes in the new document.

Overview of changes

The change in designation of NFPA 99 from a “standard” to a “code” is most obvious. This change enables an authority to adopt NFPA 99 independently of other codes and standards. It also facilitates enforcement of the requirements within, as a code instructs the design professional when to implement a particular design element or system, whereas a standard only dictates how to implement a design element or system when it is required elsewhere.

The application of the new code has been clarified to apply to “all healthcare facilities other than home care.” Provisions for home care that were contained in the 2005 edition have been removed.

A quick look at the table of contents in the 2012 edition brings to light the most significant change—the removal of the occupancy chapters. In their place, Chapter 4: Fundamentals defines four facility system categories that are used in conjunction with a risk assessment to determine the building system design requirements. As defined in Section 4.1: Building System Categories, the new categories are as follows:

  • Category 1: Facility systems in which failure of such equipment or system is likely to cause major injury or death of patients or caregivers.
  • Category 2: Facility systems in which failure of such equipment is likely to cause minor injury to patients or caregivers.
  • Category 3: Facility systems in which failure of such equipment is not likely to cause injury to patients or caregivers, but can cause patient discomfort.
  • Category 4: Facility systems in which failure of such equipment would have no impact on patient care.

Note that the Chapter 4 annex material provides further information that enables appropriate categorization.

In addition to the move to a risk‐based approach, several other chapter additions and deletions have also been made:

  • The chapter on laboratories has been removed and all references to laboratory requirements point to NFPA 45: Standard on Fire Protection for Laboratories Using Chemicals.
  • Chapter 7: Information Technology and Communications for Health Care Facilities provides requirements for information technology and communication systems. A focus is placed on ensuring the integrity of voice, data, communication, and biomedical systems that are crucial to the operation of the modern healthcare facility.
  • Chapter 8: Plumbing addresses plumbing systems. This chapter primarily discusses water, air, and grease transport systems and their corresponding need to comply with the locally applicable plumbing codes.
  • Chapter 9: Heating, Ventilation, and Air Conditioning (HVAC) outlines requirements for HVAC systems. This chapter provides requirements for HVAC system components for maintenance of environmental conditions within the healthcare facility. Specific requirements are included for ventilation and conditioning of medical gas spaces and emergency power systems rooms.
  • Chapter 12: Emergency Management has been significantly enhanced to provide a more detailed framework to be used by those responsible for emergency management in new and existing healthcare facilities and to coincide with current Joint Commission requirements. Guidance is provided for a required emergency operations plan (EOP) based upon one of two healthcare facility categories: those that plan for an influx of patients due to an emergency; and those that manage existing patients but do not plan to receive additional patients during an emergency.
  • Chapter 13: Security Management provides a framework for development of a security management plan. Important function and components of a security plan are addressed, in addition to integration of the plan with building emergency evacuation concerns.
  • Chapter 15: Features of Fire Protection addresses fire protection requirements pertinent to healthcare facilities. Many of the requirements in this chapter are extracted from NFPA 101: Life Safety Code. Topics covered include construction and compartmentation, special hazard protection of flammable liquids and gases, fire detection and alarm, automatic sprinklers, and other extinguishing equipment. 

Risk‐based approach

The risk assessment used to determine the category for a particular facility system should follow a formal documented process. NFPA 99 does not specify the process but offers recommended guidance in the form of ISO/IEC 31010: Risk Management—Risk Assessment Techniques, NFPA 551: Guide for the Evaluation of Fire Risk Assessments, SEMI S10‐0307E: Safety Guideline for Risk Assessment and Risk Evaluation Process, or other formal process. The risk assessment is the responsibility of the facility management and would require involvement by additional parties that know the impacts of system failures.

This significant change to a risk‐based approach for selection of system design category is in recognition that the location of a particular medical procedure, whether a hospital or an outpatient clinic, should have less impact on the systems that support that medical procedure than on the nature of the risk to the patient, medical staff, or other building occupants. The risk‐based methodology will likely have a more significant impact on outpatient clinics and similar facilities that were not previously held to the more rigorous system design requirements in place for hospitals.

New vs. existing

Given the considerable changes in the NFPA 99-2012, the application of the code to existing facilities may pose some questions. The approach taken in this edition is not intended to require replacement of entire existing systems in good working order. In the case of alterations, renovations, or modernizations, only the modified portion of a system or individual component is required to compliance with the 2012 provisions. Furthermore, existing construction or equipment may remain in service as long as the authority having jurisdiction does not determine that its continued use constitutes a hazardous condition.

Adoption and enforcement

Any jurisdiction, such as a city, state, or other municipality, may adopt NFPA 99. As is typical in the regulatory community, it may take some time for the 2012 edition to be adopted and enforced. Another possible entity that could adopt the new code is a healthcare system, which could require compliance with the code above and beyond the applicable local building and fire code provisions. NFPA 99 is also referenced in NPFA 101; therefore, when NFPA 101 is applicable then the provision of NFPA 99 would also be applicable as referenced. This venue for adoption brings with it the possibility for NFPA 99 to have a more formal role in the Joint Commission Statement of Conditions (SOC) process in the future.


NFPA 99-2012 is a completely reworked document for 2012. The restructuring of the code and the move to a risk‐based facility service system assessment approach are intended to reflect the changing face of the healthcare industry, where many services and procedures are being provided in outpatient clinic-type facilities that in many cases will now require the more detailed design considerations that historically have been reserved for hospitals.

McLaughlin is an associate and the Los Angeles fire engineering practice leader at Arup. He has more than 10 years of experience in the application of building and fire code requirements to projects around the global, including significant experience with healthcare facilities.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me