Adaptive control of deep fat fryers

Controlling the temperature of a deep fat fryer and maintaining that control is essential to productivity and that practice can be applied elsewhere, as well.


Process Elasticity: What french fries can teach us about process control - Applied Automation, June 2012, supplement to Control Engineering, Plant Engineering. CFE Media cover photo by Peter WelanderWhen I first began learning about controls, the emphasis seemed to be all about making sure the system was as accurate as possible while meeting its dynamic specifications. That is still important, but consider a unique situation that I ran into many years ago. It was in the mid 1990s and I was working on the design of a microcontroller-based product to operate a line of commercial electric and gas-fired deep fat fryers.

The manufacturer was the second largest in the country and did not make its own controllers. The problem grew from the fact that the company wanted a unit with some rather unique features that the current supplier was not willing to provide. The controllers at that time had to be tuned individually to operate with one of 17 different model fryers. This created many logistical problems in the field with interchangeability and replacement parts.

I wracked my brain for quite a while. Clearly some sort of adaptive approach was called for, and it dawned on me that in this particular application, tight temperature control while idling was not a requirement. Plus or minus a couple of degrees would not adversely affect any product’s final quality.

I decided to use a forced-limit cycle technique. I would compel the temperature to fluctuate ±2 °F while idling and in the steady state. This is not too different from the way a common household thermostat works. Almost all fryers operate from a power relay that operates either a sophisticated gas valve or a bank of three-phase electric heaters.

The algorithm I used was unusual. I later received a patent (USP 5,575,194) for it. The technique consists of closing the heat source relay for an adjustable on time when the falling temperature crosses the setpoint. The power stays on for a predetermined length of time and then turns off.

The asymmetrical oscillations are caused by the difference in heat flow rate between the heating element operating and loss of heat to the surrounding environment.It stays off unless the temperature fails to rise back above the setpoint. If this should happen, then another pulse is initiated and its duration is lengthened by a fixed amount of time. The program periodically measures the slope of the temperature curve. In this way, it can tell if the temperature is rising, falling, or if it has peaked or bottomed out.

Four flags are key to the operation of this control. One is set if the temperature is above the setpoint, another if it is below, a third if it is falling, and the fourth if it is rising. Any time one flag is set, its opposite is automatically reset since they are mutually exclusive. In addition to these four flags, the maximum (peak) and the minimum (lowest) values are also determined and saved.

The whole idea of this approach is to establish a fixed minimum to maximum temperature swing and maintain it. As the temperature is falling from its peak, the difference between the maximum and minimum temperatures for the previous cycle is calculated:

  • If the swing was less than it should be, then the pulse count is incremented.
  • If it is right on, then no change is made.
  • If it is too wide, then the pulse count is decremented.

In this way, the limit cycle band about the setpoint is maintained while the fryer is idling. Once the controlled temperature has peaked it will start to fall. The rate at which it falls is less than the rate at which it rises when the heat has been turned on. The net result of this is an asymmetrical oscillation about the nominal setpoint. Initially a provision was made in the program to gradually adjust the nominal setpoint while in operation in order to make the oscillation symmetric about the nominal setpoint. Subsequent actual operation of the control showed that this was an unnecessary complication.

It was fascinating to watch this algorithm at work. On average it took about 5 to 10 min for the control to adapt itself to any given fryer and reach an equilibrium state. What was equally interesting was the information contained in the resulting transient wave form. The negative slope of the falling temperature is a measure of the rate of heat loss to the environment, and the positive slope is a measure of the heat gain.

Fryers have some interesting needs. The use of solid shortening, while not as prevalent today as in the past, requires the use of a melt cycle during start-up. You cannot just turn the heat full on and go. The heat must be pulsed at a rate which will allow the shortening to melt gradually and turn to liquid.

When it has been determined that the melt cycle is over, either by looking at the temperature change or just on the basis of elapsed time, the heat comes full on and stays on until the oil comes up to setpoint. Many controllers will measure the saturated rate of heat rise during this phase and compare it to that measured during the previous start. In this way it’s possible to detect any deterioration in the heating apparatus. Gas valves may need adjusting if for some reason the heat content of the gas supply may have changed. Electrical heating elements can foul or be compromised in other ways. Our adaptive control shut the heat off during the start-up phase at a programmed number of degrees below the setpoint, and then measured the overshoot. If the overshoot was higher than the value for the maximum overshoot, then the cutoff point was adjusted to a lower value or vice versa.

Cooking appliances using even eight-bit microcontrollers are not working very hard. Unless there is a lot of external communication going on, there is ample time to perform other tasks such as diagnostic testing. For example, the controller described here has a feature where it looks during start-up for the oil temperature to stall at 212 °F. This is, of course, the boiling point of water. Sometimes after a fryer has been cleaned, operators forget to drain the water and add fresh shortening. Careless operators like that have been scalded by the roiling water when they start the fryer without thinking.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me