Keys to achieving high accuracy and reliability in temperature measurement

The final result of your temperature measurement will depend on the interaction of all the devices and connections between the sensor and control system.


Order a free copy of the Engineer’s Guide to Industrial Temperature Measurement at Courtesy: Emerson Process ManagementTemperature is the most widely measured variable in process industries and is often a critical factor in industrial processing. If a temperature measurement is not accurate, repeatable, and reliable for any reason, it can have a detrimental effect on such things as process efficiency, energy consumption, product quality, and possibly process safety.

Even a small measurement error can be disruptive or very costly in some processes. Pharmaceutical processing is an example where an inaccurate temperature measurement might ruin a batch of product worth hundreds of thousands of dollars. Another example is in a safety loop where poor performance could be costly, deadly, or both. An example might be a process that can go exothermic and possibly explode if temperature is not measured and controlled accurately. These examples emphasize that each measurement system needs to be evaluated carefully and engineered to satisfy the requirements of the process.

Links in the measurement chain

Measurements are typically made using a sensor, usually a TC (thermocouple) or an RTD (resistance temperature detector), and a signal conditioning circuit (either a transmitter or a channel of an input card to a DCS or PLC) to amplify the sensor’s low level (ohm or mV) signal to a more robust 4-20 mA current signal. These components, when combined with a field connection head and thermowell, are referred to as a temperature measurement system or assembly. Articles in this series have considered these individually, but now it’s important to consider the larger integration.

Systems are available to meet a variety of measurement accuracy and stability requirements. Some applications just look at trends, and absolute accuracy is not very important. On the other hand, others may have huge financial impact due to temperature measurement errors. Examples include off-spec production that may require reprocessing, a nuisance process shut down requiring an expensive process restart, reduced production rates, and frequent recalibration costs.

As an insight, the accuracy potential of a high-accuracy system is orders of magnitude more accurate than a loosely designed system. Over- or under-design of your system could be a very expensive oversight.

Determine system requirements

To the new or inexperienced engineer it may seem like a daunting task to select the proper temperature measurement system for an application. To design a reliable temperature measurement system, a series of questions needs to be answered to understand the application thoroughly. As a result of this, the best choice of system components can be made including the thermowell, sensor, and signal conditioning device. Performance requirements of the measurement must also be determined. Operating conditions during start-up, steady-state, and potential abnormal conditions must all be considered.

As with any task, a logical and methodical approach usually begins with understanding the performance and physical requirements of the measurement application:

  • Review process P&IDs
  • Compare diagrams to the actual installation
  • Evaluate possible mounting locations
  • Consult with process, mechanical, and environmental engineers during the component selection, and
  • Plan scope and schedule with project managers.

This kind of method will usually lead to the best path to follow for a well-engineered solution.

Identify measurement performance factors

Figure 1: Accuracy of a temperature measurement system is the degree of closeness of the measurement of a temperature to that temperature’s actual (true) value. Repeatability, is the degree to which repeated measurements under unchanged conditions show thTemperature measurement system performance is influenced by a number of factors in reporting process temperature measurements. The most significant of these are defined and explained below.

Accuracy of a temperature measurement system is the degree of closeness of the measurement of a temperature to that temperature's actual (true) value.

Repeatability of a measurement system, also called precision, is the degree to which repeated measurements under unchanged conditions show the same results. As an example, an instrument could present the same value for temperature every time (under the same measurement conditions), but the value is offset from the correct value. This is repeatable but not accurate. An ideal measurement is both accurate and repeatable (Figure 1).

Stability refers to the transmitter’s ability to avoid drift in order to maintain accuracy over time. It is related to the sensor’s measurement signal, which can be influenced by humidity and prolonged exposure to elevated temperatures. Stability is maintained by using reference elements in the transmitter, against which the sensor input is compared. The leading transmitter manufacturers, to improve accuracy and stability, fully characterize every transmitter over its entire temperature range to compensate for the temperature-dependency of the digital-to-analog converter (D/A) and the analog-to-digital converter (A/D).

Stability of a transmitter is often stated in terms of percent of the reading or the expected maximum change in measured temperature in degrees C or F over a specified amount of time for each sensor type. Data is typically given in year intervals such as one, two, or five years. Typical examples from a high-end transmitter are:

  • RTDs: ± 0.25% of reading, or ± 0.25 °C (0.45 °F) for five years, whichever is greater.
  • TCs: ± 0.5% of reading, or ± 0.5 °C (0.9 °F) for five years, whichever is greater.

Figure 2: One way to quantify the stack-up of errors is to use a total probable error (TPE) calculation. This analyzes the probable error of the transmitter and sensor system, based on anticipated installation conditions. Courtesy: Emerson Process ManagemThe stability specifications here refer to the transmitter performance and do not include the sensor itself. A well-made RTD is generally considered to be highly stable and will not degrade significantly over time. However, even a well-made TC will degrade measurably over time and much more quickly at high temperatures.

The critical lesson from all this discussion is that your design must recognize the performance of the entire measurement system, not just the transmitter or sensor. One way to quantify the stack-up of errors is to use a total probable error (TPE) calculation. This analyzes the probable error of the transmitter and sensor system, based on anticipated installation conditions. The components of this calculation include the root sum square of the transmitter and sensor accuracy effects (Figure 2).

Durability and reliability create confidence

It is reasonable to assume that a durable device or system will be reliable. You can depend on it to perform its intended function. Just as you would expect a durable battery in your car to reliably start the engine and run the accessories under all reasonable conditions, you would expect a durable temperature measurement system to perform under its specified conditions. Confidence is built upon a history of reliable performance.

In designing a temperature measurement system, each component should be selected to provide the reliability demanded of an application. For example, if dealing with a high-precision measurement requirement, you would not select a sensor that has an excessive drift expectation. If your environment is electrically noisy, you would not use a transmitter that did not offer intelligent filtering capability. Likewise, in a high-velocity flow application, you would not select a thermowell without performing wake frequency calculations. The common element is that you must understand the process to know what the most critical requirements are.

<< First < Previous Page 1 Page 2 Next > Last >>

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me