Using technical assessment to identify root cause

A large pulp mill was shut down due to failure of the forced draft fan on its recovery boiler. Excessive vibration of the inboard bearing had broken the cooling water line inside the oil-filled bearing housing and flushed out the oil. The bearing journal had overheated, cracked and melted the Babbitt causing heavy scouring damage to the shaft surface.




A large pulp mill was shut down due to failure of the forced draft fan on its recovery boiler. Excessive vibration of the inboard bearing had broken the cooling water line inside the oil-filled bearing housing and flushed out the oil. The bearing journal had overheated, cracked and melted the Babbitt causing heavy scouring damage to the shaft surface.


When our corporate team arrived on site, the mill maintenance crew was busy hand-dressing the bearing surface on the shaft as a large air motor slowly turned the rotor. Meanwhile, the spare set of bearing sleeves for the fan had been packed up and shipped to a repair shop for re-Babbitting to a


Design changes affect fan performance

A boiler design change, which included upgraded black liquor firing guns, smaller air ports and air-to-fuel ratio changes (to minimize stack emissions) reduced fresh air demand by about 30%. Consequently, the fan was grossly oversized. It was originally sized for 300,000 CFM and 25 inches of static pressure using a 1,200 rpm, 1,500 hp motor. Boiler design changes had not included fan modifications. New requirements were for 225,000 CFM of air flow at 15 inches of static pressure, which equated to about 900 hp. The fan inlet dampers were heavily throttled.


Technical assessment reveals root cause

Our mission was to lead a technical assessment of the situation and recommend a permanent solution to the longstanding problem. We learned that the mill staff had been using a local vibrations consulting company to perform testing and balancing on a semi-annual basis. The vibration consultants identified the problem as a resonant frequency issue.


Original design data for the fan indicated that the first harmonic speed for the unit should be about 1,500 rpm %%MDASSML%% well above the 1,200 rpm operating speed. However, due to the reduced air flow, higher temperature conditions and a peculiar bearing pedestal sole plate design, the first harmonic speed was actually somewhere around 1,130 rpm.


Mill personnel confirmed that during boiler operation, a slight salt-cake carry-over from the air pre-heater was depositing on the fan rotor, and soon vibration would go from a good condition to a very rough condition. The harmonic resonance was then exacerbating the problem. Over the past two to three years, adding weights became the quick fix. We noted dozens of large weights on the rotor. Indications were that one had come off, which caused this catastrophic failure.


During the briefing meeting, the vibration consultant described the problem and recommendation a change of the harmonic speed. He described connecting heavy steel cables and turnbuckles to the bearing housings, which would be anchored to new concrete piers in the floor. His preliminary computer analysis data indicated that stiffening the foundation would raise the first harmonic speed to about 1,280-1,300 rpm.


The concept was different and initially sounded reasonable. However, our assessment identified an employee safety issue with cables and piers in the main maintenance aisle adjacent to the fan. Also, maintaining the proper cable tension could prove to be another ongoing challenge. The fan rotor was seven feet in diameter and six feet wide with a 12 inch shaft. The weight of the rotating assembly was 16,000 pounds. Stresses on the bearing housings were also identified as a potential issue that could introduce axial vibration.


From a technical perspective, we were concerned about inefficiency of the existing drive. Slowing the fan down to 900 rpm appeared to be a more practical solution. Power savings alone would be on the order of $400 per day. In addition, power factor and harmonic conditions would also be much improved by replacing the 1,500 hp motor.


Identifying solutions

During an extensive brainstorming session, a spare 900 rpm, 750 hp motor for the boiler induced draft fan was identified. Our evaluation also took into consideration long-term reliability and boiler capacity, safety concerns, future maintenance workload and cost alternatives. Starting the boiler back up with the existing 1,200 rpm drive motor was the agreed-upon interim direction.


The unit was started two days later with the re-Babbitted bearing sleeves and a clean fan rotor with only two balance weights. An extensive testing regimen was developed to verify air flows, static pressure and power requirements under various load conditions. Test data were analyzed and later confirmed that operating the fan at 900 rpm should work satisfactorily even without having to re-tip the fan blades. A month later, at the next available outage, the spare 900 rpm motor was installed and the 1,500 hp motor was sent out to be rewound for 750 hp at 900 rpm.


The rewound motor was reinstalled three months later, along with new fan bearings that did not have removable sole plates. Once the unit was performing satisfactorily, fan inlet louvers were reconfigured to match static pressure requirements. Fan vibration at full load on the boiler was down to 1/10 of the previous readings. Motor load was 595 hp %%MDASSML%% well below the 750 hp maximum. The boiler has continued to operate at or near full load with no fan problems.


Lessons to be learned


Be careful about running with the first solution offered by an outside expert. Generally, experienced, involved team members conducting problem-solving exercises as part of a technical assessment can be a very sound maintenance strategy.


A forced draft fan on a recovery boiler in a large pulp mill experienced excessive vibration resulting in bearing failure. A boiler design change reduced the speed and horsepower requirements of the fan motor. Matching the motor to the load solved the problem, improved fan performance and significantly reduced full-load fan vibration.




Author Information
Gary Wamsley is an engineering consultant at JoGar Energy Services in Atlanta with more than 30 years of experience with industrial utilities. He can be reached at .


Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
October 2018
Complex upgrades for system integrators; Process control safety and compliance
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me