Four features used to define RCM

We could say the overriding preventative maintenance motivation can currently be simply characterized as "preserve equipment." Almost without fail, our current maintenance planning process starts directly with the equipment, and its sole purpose is to specify actions required to "keep it running." But recognize from the outset that Reliability-Centered Maintenance is not just another cleverly ...


We could say the overriding preventative maintenance motivation can currently be simply characterized as "preserve equipment." Almost without fail, our current maintenance planning process starts directly with the equipment, and its sole purpose is to specify actions required to "keep it running."

But recognize from the outset that Reliability-Centered Maintenance is not just another cleverly packaged way to do the same old thing again. Rather, it is very different in some fundamental aspects from what today is the norm among maintenance practitioners, and requires that some very basic changes in our mindset must occur. As you will see in a moment, however, the basic RCM concept is really quite simple, and might be viewed as organized common sense.

So just what is RCM? There are four features that define and characterize RCM, and set it apart from any other maintenance planning process in use today. We will use a hypothetical scenario to develop and understand these four features.

Feature 1

Picture a typical business conference room which, we will hypothesize, represents the location of a system in our process plant. As we stand outside the walls (i.e., boundary) of the room, we observe that a 24 inch diameter pipe is moving water at ambient pressure and temperature into the room (i.e., system). At the other end, we find a 24 inch diameter pipe exiting the room, but now the water has been elevated in pressure and temperature to some levels that are required elsewhere in our process plant.

Notice that at this point, we (theoretically) have no idea what is inside the room. But whatever this may be, it has made the room capable of elevating water pressure and temperature. We call this capability the function of the room (i.e., system), and we are able to accurately define this function without any knowledge of the room contents (i.e., equipment). In order for our plant to produce its end product, we must assure that this system continues to perform its job. That is, we must "preserve system function"-and this is the first and most important feature of RCM.

At first glance, this is a difficult concept to accept because it is contrary to our ingrained mindset that PM is performed to preserve equipment operation. By first addressing system function, we are saying that we want to know what the expected output is supposed to be, and that preserving that output (function) is our primary task at hand.

This first feature enables us to systematically decide in later stages of the process just what equipments relate to what functions, and not to assume a priori that "every item of equipment is equally important," a tendency that seems to pervade the current PM planning approach.

Feature 2

Since the primary objective is to preserve system function, then loss of function or functional failure is the next item of consideration. Functional failures come in many sizes and shapes, and are not always a simple "we have it or we don't" situation. We must always carefully examine the many in-between states that could exist, because certain of these states may ultimately be very important.

The paramount question, then, would be to ascertain just what has happened inside the room to produce the functional failure. To answer this question, we now open the door and step into the room (system). There before us are all of the components (equipment) that are working together in some harmonious manner to produce the function that was observed when we were standing outside the walls (boundary) of the room. Our job now is to meticulously examine each component in order to delineate just how it might fail such that the functional failure(s) could occur. Thus, the key point in Feature 2 is that we make the transition to the hardware components by "identifying specific failure modes that could potentially produce the unwanted functional failures." By way of illustration, a flow control valve (component) that is jammed shut (failure mode) could produce the functional failure "fails to initiate system startup."

Feature 3

In the RCM process, where our primary objective is to preserve system function, we have the opportunity to decide, in a very systematic way, just what order or priority we wish to assign in allocating budgets and resources. In other words, "all functions are not created equal," and therefore all functional failures and their related components and failure modes are not created equal. Thus we want to "prioritize the importance of the failure modes." This is done by passing each failure mode through a simple, three-tier decision tree which will place each failure mode in one of four categories that can then be used to develop a priority assignment rationale. (This will be discussed in detail in a subsequent article.)

Feature 4

Notice that, up to this point, we have not yet dealt directly with the issue of any preventive maintenance actions. What we have been doing is formulating a very systematic roadmap that tells us the where (component), what (failure mode), and priority with which we should now proceed in order to establish specific PM tasks-all of this being driven by the fundamental premise to "preserve function." We thus address each failure mode, in its prioritized order, to identify candidate PM actions that could be considered.

And here, RCM again has one last unique feature that must be satisfied. Each potential PM task must be judged as being "applicable and effective." Applicable means that if the task is performed, irrespective of cost, it will in fact accomplish one of the three reasons for doing PM (i.e., prevent or mitigate failure, detect onset of a failure, or discover a hidden failure). Effective means that we are willing to spend the resources to do it.

Generally, if more than one candidate task is judged to be applicable, we would opt to select the least expensive (i.e., most effective) task. In describing a run-to-failure task category, there are three reasons for such a selection. To be more precise, failure of a task to pass either the applicability or effectiveness test results in two of the run-to-failure decisions. The third would be associated with a low-priority ranking and a decision not to spend any PM resources on such insignificant failure modes.

In summary, the RCM methodology is completely described in four unique features:

  1. Preserve functions.

  2. Identify failure modes that can defeat the functions.

  3. Prioritize function need (via failure modes).

  4. Select applicable and effective PM tasks for the high priority failure modes.

    1. The above four features totally describe the RCM concept —nothing more and nothing less. For any maintenance analysis process to be labeled as RCM, it must contain all four features. The authors have occasionally encountered maintenance programs that are purported to be RCM programs but lack one or more of the four features. And usually these programs are also less than satisfactory, and tend to give RCM an unfair reputation. So we caution you to avoid the shortcuts if you truly wish to have an RCM-based PM program.

      Printed with permission from Butterworth-Heinemann, a division of Elsevier, from RCM--Gateway to World Class Maintenance, by Anthony M. Smith, AMS Associates Inc. in California, and Glenn R. Hinchcliffe, Consulting Professional Engineer, G&S Associates Inc. in North Carolina. Copyright 2004. For more information about this title, please visit .

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me