Understanding machine safety analysis in the U.S. (Part 2)

If you struggle trying to figure out how OSHA, ANSI, and ISO relate, you’re not alone. Part 2: Reaping rewards.

12/18/2012


Read Part 1

This trail of breadcrumbs has led us back to ISO 13849-1:2006, Safety of Machinery – Safety-Related Parts of Control Systems. This new standard is the basis for the PL and B10d ratings you see on many safety devices today. The ratings are ranked “a” through “e” in increasing risk to the operator, with “e” being the greatest risk. Within this standard, the EN-954 categories for circuit types survive, but are only part of the implementation. More common-sense approaches are allowed, taking into account variables such as mean time to dangerous failure (MTTFd) for devices, monitoring devices for failure, circuit types (cat.1-4), and even those hazards which cannot be guarded without impeding the work to be done (such as PPE, signage, training, etc.). All of these are on the table if the situation supports them. ISO 13849-1:2006 was developed with the support of ANSI, as this organization supplied representative engineers to help with development of this standard. ANSI is a contributing member of ISO standards development and adoption boards.

All indications point to ISO 13849-1 being adopted in the U.S. in the future, but nothing is official thus far. Many companies are now employing some form of risk/hazard analysis as part of their documentation and development procedures. While this is not a requirement in the U.S., several arguments support adopting such a standardized procedure:

1. Reduced cost—By properly applying a standard such as the one provided by ISO, safety methodologies with appropriate performance criteria can be selected. This avoids overly complex systems in areas where they are not needed, while ensuring a proper level of protection for operators.

2. Defensibility—This is one of the more difficult to discuss, but it bears mentioning. Should it occur that someone is injured by manufacturing equipment in a facility, it would behoove the company(s) and engineers involved to have fully documented the process by which the hazards were identified, quantified, and mitigated. This is the best proof that all reasonably foreseeable hazards and the risks they posed were considered and safeguarded to the best abilities of those involved. Without a documented methodology, each entity involved in the development, construction, and implementation of the equipment leaves itself open to scrutiny in the investigation of personnel injury.

3. Productivity improvement—Where these systems are employed, an improvement in productivity is almost universally reported. The ISO standard does call for input from various sources in the assessment of hazards and their mitigation. These sources come from all levels of interaction on the machine: from operators and supervisors in production, through engineering and purchasing. This creates an environment where the operators and supervisors have a level of buy-in of the final solution through their contribution to its inception. Additionally, their involvement adds to an increased feeling of worth and safety in their work environment. This contributes to a reduction in stress, accidents, and injuries. These reductions lend themselves to improved productivity in the work place.

4. Standardization—The final argument I pose for such safety systems is that of standardization. Standardization in the approach to safety systems allows for a more standardized set of solutions for a production line. Using common documentation, components, and techniques across a production facility allows operators to cross train more easily on equipment, and creates greater flexibility in a production facility. This also shortens the learning curve for maintenance and often reduces the number of replacement parts required to be on hand to maintain production in a facility.

While I have called out ISO 13849-1:2006 as my procedure of choice, it is not the only option out there. I have also mentioned B11-TR3 from ANSI as the procedure from ANSI/RIA, found in r15.06. If you are not currently using a standardized approach to your safety systems, I highly recommend investigating an appropriate solution   as your company will see the gains in the near future.

Bibliography

ANSI. (2012). ANSI B11. Machine Tools Safety Package. Retrieved from American National Standards Institute: http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+B11.+Machine+Tools+Safety+Package#.ULktmYOTqpA

ANSI. (2010). ISO/TR 23849:2010. Retrieved from American National Standards Institute: http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fTR+23849%3a2010#.ULkvQ4OTqpA

OSHA. (1991, 5 21). Cooperation between OSHA and ANSI. Retrieved from United States Department of Labor: http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=MOU&p_id=239

OSHA. (2007). Safeguarding Equipment and Protecting Employees from Amputations. Retrieved from United States Department of Labor: http://www.osha.gov/Publications/OSHA3170/3170-02R-2007-English.html



This post was written by Karl Schrader. Karl is a senior engineer at MAVERICK Technologies, a leading system integrator providing industrial automation, operational support, and control systems engineering services in the manufacturing and process industries. MAVERICK delivers expertise and consulting in a wide variety of areas including industrial automation controls, distributed control systems, manufacturing execution systems, operational strategy, and business process optimization. The company provides a full range of automation and controls services – ranging from PID controller tuning and HMI programming to serving as a main automation contractor. Additionally MAVERICK offers industrial and technical staffing services, placing on-site automation, instrumentation and controls engineers.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.