Sustainable projects and partnerships

No longer a fringe concept, engineering green is now a critical business and economic issue.


No longer a fringe concept, engineering green is now a critical business and economic issue. Environmentally friendly products help organizations become more efficient and drive significant cost savings. More businesses and institutions consider incorporating green technologies and design methods into new buildings and expansion projects.

Some institutions can meet their goals through specific products and solutions, implemented on a project basis. For others, sustainability is a long-term proposition, requiring broader strategic consultation.

Major organizations and institutions are embracing the idea of going green and making the commitment to become more energy-efficient. Superior green building products are important to this effort, but so is a strategic range of solutions designed to meet unique challenges. Collaborative, long-term relationships offer an ideal opportunity to develop those strategic solutions. These collaborations will result in significant cost savings and enhanced reputations among key stakeholders.

Airport flies green

In August 2001, Delta Air Lines reached an agreement with the Massachusetts Port Authority (Massport) to redevelop Terminal A at Boston Logan International Airport—New England's largest airport. As an added feature to redeveloping the terminal, Massport was to transform the 686,000 sq ft into the first truly sustainable structure of its kind and to achieve a USGBC LEED rating.

“As we finalized our investigations of what would be required to complete this major project, it became apparent that our power systems would need state-of-the-art solutions,” said John MacDonald, PE, senior electrical engineer for the project, TMP Consulting Engineers, Boston. “We turned to Eaton's Electrical Group because of its reputation in the electrical industry.”

Because of the length of the buildings (the Satellite Building was 1,100 ft long), the buildings were split in half electrically, with a double-ended substation using cast-coil transformers to serve each half.

Eaton's Electrical Group offered a solution that would not only provide Massport lighting controls, but also measure the airport's energy usage and ultimately reduce energy consumption. Eaton provided Massport with its Pow-R-Command 100. This system controls individual loads, and switches them through a network of individual panels. These are influenced by BAS, wall switches, time schedules, and software, and through telephone commands.

By scheduling the lights to turn off when the terminal is not in use and using daylight-harvesting controls, the network system reduces light energy consumption at the terminal by as much as 30%.

As a result of Eaton's energy control system, Terminal A at Boston Logan Airport met the Massachusetts Energy Code, which mandates that lighting controls be used on all buildings to ensure lights are scheduled off at night and lighting is off in unoccupied rooms.

A green education

Eaton and the University of Notre Dame, South Bend, Ind., have had a long-standing relationship. Based on this relationship and past collaborations, it was a natural progression for the university to discuss projects with Eaton and explore how the two organizations could work together to solve the university's energy-related challenges.

This particular challenge: to start and control a 1,750 hp fan motor for a large-scale wind tunnel for the Aerospace and Mechanical Engineering Dept. of the College of Engineering. Planning began in 2006, orders started in 2007, and installation began in early 2008.

Because this installation is part of a major research project, the concern was the ability to start and control such a large load without adversely impacting the university's electrical distribution system, and providing the researchers with the ability to control the experiment at various speeds. Eaton provided its medium voltage drive that instructs the motor to start and operate at variable speeds and loads without stressing the university's electrical distribution system, while also minimizing motor wear and tear. By also using Eaton PowerNet controls, the university Utilities Dept. has been able to manage the operation of this significant load to avoid undesirable power demands and associated penalty costs.

During installation, Eaton engineers needed to find a way to control the operation of this load so its demand would not adversely affect the university's typical on-peak demand.

Eaton installed its PowerNet system tin order to place constraints on the operation and loading of the VFD during on-peak times. The electrical engineers also used this system to ensure that the university's electrical system operators would have to be contacted to enable the VFD to go above a prescribed testing speed (to restrict load).

Installation and testing has been ongoing since late 2007. The final pieces of the wind tunnel currently are being installed and are expected to achieve full operation in fall 2008.

As the University of Notre Dame and Eaton continued to work together on a daily basis, the university's chief electrical engineer, Tim Golichowski, and Eaton's sales team leader, Bryan McClure, discovered a failed application of an adjustable frequency drive at the school's DeBartolo Classroom Building. After studying the proper application for this equipment and considering the most energy-efficient option, Eaton provided its SVX adjustable frequency drive, and the application was up and running.

The two organizations, in cooperation with BSA Life Structures, Indianapolis, have collaborated more broadly on LEED initiatives for the university's new Stinson-Remick Multidisciplinary Engineering Building. The university's architect, Doug Marsh, and the director of utilities, Paul Kempf, brought the three groups together to focus on opportunities for the DeBartolo Classroom Building.

The university was seeking opportunities for enhanced lighting control, metering, and verification, along with HVAC equipment operations. New applications for the facility include Eaton's SVX drives for various air handling and heavy mechanical operation applications, Pow-R-Command for lighting applications, Power Xpert metering, and IQ220 and IQ Energy Submeter II panel mounted meters.

Eaton has assisted the university in developing the system architectures and control strategies that will allow these products to more efficiently control the facility and provide educational opportunities for the faculty, students, and visitors to the facility.

The combined application of these Eaton solutions may contribute to eight LEED credit categories and two prerequisites (see Table 1).

In addition to contributing to LEED certification, the Power Xpert metering and software equipment also help educate Notre Dame students. Energy information provided via the Power Xpert meter will be displayed in the lobby of the Stinson-Remick Engineering building and in the facility's Learning Center, where students and faculty can study and experiment with their energy usage in real time, and survey historical data. Students will take an active role in promoting the energy efficiency of the building.

Eaton also agreed to develop unique educational content for a Power Quality Lab in the engineering building. The goal is to provide hands-on training with state-of-the-art equipment.




SSCredit 8

Light pollution reduction

Control interior lighting for contribution to reduce light spilling out of windows


Fundamental commissioning of the

Use of lighting controls, building energy systems VFDs, and metering as commissioning tool

EAPrereq 2

Minimum energy performance

Use of lighting controls and VFDs for energy efficiency

EACredit 1

Optimize energy performance 10.5%

Use of lighting controls and VFDs for energy in new buildings, or 3.5% in existing efficiency building renovations

EACredit 3

Enhanced commissioning

Use of lighting controls, VFDs, and metering as commissioning tool for commissioning electrical, lighting, and HVAC systems

EACredit 5

Measurement & verification

Metering energy usage

EQCredit 2

Increased ventilation

Use of VFDs to manage fan speed and ventilation rate

EQCredit 6.1

Lighting, systems control

Lighting control applications

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.
Electric motor power measurement and analysis: Understand the basics to drive greater efficiency; Selecting the right control chart; Linear position sensors gain acceptance
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.