Selecting, maintaining UPS

Engineers who design and specify systems should be cognizant of the various conditions that facilitate optimal lifecycle performance for an uninterruptible power supply system.


Engineers who design and specify systems should be cognizant of the various conditions that facilitate optimal lifecycle performance for an uninterruptible power supply (UPS) system. Among the factors to consider: selecting a UPS uniquely suited to a particular customer and the facility; ensuring that environmental concerns are addressed; overseeing the system's integration with control systems; and outlining appropriate service requirements for ongoing UPS health.


Because today's MEP designers face a variety of integration issues, it can be beneficial to consider a power chain offering, in which a single vendor packages an integrated system to include products such as surge suppression devices, switchgear, HVAC, power distribution, equipment racks, and generators. In addition to providing significant savings for a customer, a packaged solution also offers a more coordinated approach that is easier to maintain. The up-front capital cost also may be lower.


When specifying a UPS, attention must be paid to right-sizing and load matching requirements. Typical guidelines recommend that a UPS be loaded to no more than 80% of its rated capacity, which primarily is to allow headroom for unplanned additional loads. In parallel systems and dual-bus architectures, the UPS system often will operate at less than 50% of load, oftentimes at about 40%. If the system is a 2N+1 configuration, the system can be at 30% or less. Because some models are quite inefficient at this level, be sure to choose a UPS that delivers good partial-load efficiency.


Furthermore, if the load characteristics are different than typical IT or data-processing loads—such as medical imaging, motors, lighting, and HVAC—then the UPS should be oversized to allow for the varying nature and changing magnitude of these loads, as well as for the inrush of motors and large transformers.


Traditional UPS systems used in today's 2N data centers have an efficiency profile that is high on the efficiency curve—at near 100% load. However, in the typical operating range of 30% to 50%, there is a significant drop. Today's newer high-efficiency designs offer a “flatter” efficiency curve, and maintain excellent efficiency levels, even at lower operating levels, often seen in 2N and dual bus data centers.


Many times, IT and facilities managers have different requirements for the same UPS. While an IT manager may seek a UPS that is reliable, easily maintainable, has simple network management protocol, or Web-based monitoring, and offers high efficiency for minimized power and cooling costs, a facilities manager will request a unit with a low initial cost, ease of access for installation and service, and Modbus communications and monitoring capabilities. Select a UPS model that allows both facility monitoring systems and IT data center monitoring systems to interface with the unit at the same time.


How many do I need?


A key question that often arises in the early design stage is whether to use one large, centralized UPS and battery system, or several UPS systems distributed among the various sections of the data center. There is no single answer to this question.


Although a centralized system limits the number of devices to monitor and eases maintenance with a single battery system, a distributed system allows power protection equipment to be deployed physically and electrically close to the load it supports. This approach enhances reliability, and allows the IT manager more visibility into the critical power products that ensure system availability.


Regardless of the type of UPS chosen, it is imperative to ensure proper environmental conditions for the unit, including temperature, humidity, and ventilation. While the electronics systems that comprise UPS systems are exceptionally tolerant of temperature and humidity variations, it is prudent to maintain conditions of 70 to 80 F. Additionally, if the UPS has internal batteries or adjacent battery cabinets, they have a more restrictive temperature requirement, ideally 77 F. If kept at a consistently higher temperature, the battery service life may be dramatically impacted.


When it comes to ventilation, most installations will rely on air conditioning in the space where the UPS is located to remove the accumulated heat. Deploying a highly efficient UPS that produces less heat addresses this concern, and saves ongoing cooling and electricity costs.


When integrating a UPS, the unit also should be evaluated for compatibility with a facility's existing or planned building monitoring system (BMS) or building automation system, which may use various protocols for communication with security, fire detection and suppression, critical power, and cooling equipment. Additionally, simple relay contacts may be used with almost any BMS to communicate the key status items for the UPS. Sophisticated systems that solely monitor the condition of the UPS's battery system also exist, offering advanced warning if a battery or battery array becomes weakened.


Once a system is selected and installed, the user should pay close attention to service requirements for the UPS and its battery system. An effective preventive maintenance plan will save time and money by minimizing business interruption and the costs of downtime, and enhance overall return on investment by extending the life of the critical power equipment (see Figure 1). Preventive maintenance also is crucial to achieving maximum performance from the UPS system.


Author Information

Spears has 28 years of experience in the industry in UPS systems testing, sales, applications engineering, and training.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me