Mobile industrial worker

Technologies have enabled industrial workers to get mobile, and there’s no going back.


Greater worker mobility is one of the biggest trends in organizations. Whether it’s called BYOD (bring your own device), “multiple devices,” or just plain “Internet of things,” workers of all sorts—control engineering, instrumentation technicians, plant managers, maintenance personnel, troubleshooters, design engineers, and all manner of factory workers—are becoming mobile workers. They are all using wireless devices to do their jobs. There are lots of reasons. From motor manufacturers to food factories, from paint plants to drink distributors, from oil rigs to service companies, more companies are cutting the fixed wire leash that has been holding back their workers from doing more with less.

Many reasons contribute to the greater use of mobility on plant floors and manufacturing operations, but the reality is that industry has no choice. We’re undergoing one of the biggest shifts in workforce availability in recent history. Baby boomers are retiring and the newer generations just can’t fill the void. Looking at the oil industry, for example, Booz Allen Hamilton found a year or so ago that there are only 1,700 people studying petroleum engineering in 17 U.S. universities, compared to more than 11,000 in 34 universities in 1993. This dramatic reduction in worker resources means more automation in factories wherever possible, greater access to expertise globally, and more responsive organizations employing truly mobile workforces.

Extending reach

Workers must be enabled with the latest technologies and devices so that they can interact with automation controls and machines, from afar if necessary. That means the underling network infrastructure has to be up to the challenge. Until recently, wireless networks haven’t been as robust as many manufacturing operations would like. Thankfully that’s changing rapidly with “industrial-strength” networking that has the kind of capabilities manufacturing operations need. That infrastructure has to withstand a host of factory-style interference, mitigate conflicts, and self-heal to be able to maintain continuity of operations.

As a result, workers can carry mobile devices that more reliably interact with machinery from a sensing and from a reaction perspective. There are still the big red buttons of course, but HMIs (human-machine interfaces) are not always hardwired to the machine anymore. Systems now can enable a worker to monitor and interact with multiple machines and take reactive measures if necessary. For example, wireless radio frequency identification (RFID) based e-Kanban systems operate in motor manufacturers for line side parts replenishments, and mobile computer devices are fixed to forklift trucks that interface with warehouse and ERP systems, as well as wip (work in process) parts and materials tracking systems on the plant floor. Now we’re starting to see machine controls added to the list of mobile device capabilities.

Mobile wireless workers find benefits in companies such as Thermo King, which manufactures transport temperature systems for trailers, truck bodies, and other applications. The company configures production lines with wireless, battery-operated call buttons for parts replenishment. The same wireless infrastructure that staff uses for data communications with laptops and handheld mobile computers is used to receive parts requests to replenish work area parts bins. Since the solution requires no hard wires, it is easy to deploy and, more importantly, enables flexible support of changes to different production line layouts. Production lines can be reconfigured easily, just by remounting the wireless Kanban-like call button. No rewiring is required since the call button is battery operated. Oil companies similarly use wireless systems, sensors, actuators, and other automation technologies for the same reason—flexibility, and a huge saving in manual labor laying power and Ethernet or other protocol lines over a large plant surface.

Once a plant implements a wireless infrastructure that is rugged enough to handle moving vehicles, such as forklift trucks and carriers that might have electromagnetic, metal obstruction, and network interference, then WIP and supply chain applications can be deployed.

This enables mobile workers to carry devices, sometimes firmly fixed to the vehicle, to communicate with the enterprise resource planning (ERP) and manufacturing execution system (MES) software. That’s what companies like John Deere and Continental Tires of the Americas are doing. They enable mobility on the production floor, making sure that the right parts and materials are used at the right time and that supply chain issues can be reworked in real time. In both cases workers actually “see” the plant-floor configuration on their devices, and can use it as a real-time map.

See what’s going on

Ability to better “see” what is going on is another advantage of wirelessly enabled workers. If you look at intercompany interactions, for example, between Boeing and GE Aviation regarding the 787 Dreamliner engines, engineers can talk to each other with video and voice devices. Looking like a traditional single lens reflex (SLR) camera, the device GE Aviation uses is a wireless-enabled IP telephony and video communications device that even allows for telestration techniques (on-screen mark-ups by both the mobile workers and remote engineers) and the input of other devices (like borescopes) to “see” what’s going on inside an engine or part and get real-time data. These mobile workers can move around the plant and send real-time video to developers in conference rooms using telepresence techniques, for example.

From an automation and controls perspective, wireless is increasingly becoming the norm. Manufacturing industries (discrete, process, and hybrid) are beginning to rely on real-time information gained from wireless networks of sensors installed at key points throughout the factory or field site. This data could be the measurement of air pressure, electrical current, weight load, corrosion, fuel levels, temperature, pipe flow, and the like. These data points are essential to the effective and efficient operations of a safe plant. Many of the most robust wireless sensor systems themselves use self-organizing mesh technology that is tried and tested, and the basis for the WirelessHART and ISA100 standards.

As we move through 2012, wireless technologies will continue to enable worker productivity. We’ll see more handheld devices in tablet form, some ruggedized, others not. There will be multiple devices attached to multiple networks, producing more data. Those involved will want to have more control, more access, and more security, and with it will come more complexity if not implemented in the right way. The biggest issue facing the control engineering and the IT sides of the organization will be the resulting deluge of data—not so much the data-at-rest (stored data for historians and data warehouses, for example), but data-in-motion.

How organizations implement data mobility will demonstrate the value of wired and wireless networks in dealing with real-time information and the effect on controls. Different threads of information can be drawn together in an intelligent network to provide knowledge. Coming full circle, that knowledge will help organizations deal with the lack of skilled workers.

- Peter Granger is senior manager, Cisco Systems. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering. This is part of the March 2012 cover story for the Control Engineering North American print and digital edition. 

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2017 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
SCCR, 2018 Maintenance study, and VFDs in a washdown environment.
Welding ergonomics, 2017 Salary Survey, and surge protection
2017 Top Plant winner, Best practices, Plant Engineering at 70, Top 10 stories of 2017
Product of the Year winners, Pattern recognition, Engineering analytics, Revitalize older pump installations
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Setting internal automation standards
Knowing how and when to use parallel generators
PID controllers, Solar-powered SCADA, Using 80 GHz radar sensors

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me