Intelligent Safety Networks

Intelligent Safety Networks (ISNs) for manufacturing are intelligent in more ways than one. These adaptable and fully programmable systems do a better job of ensuring safe machine operations than traditional hardwired safety systems, and they are also an intelligent choice for plant management, since they reduce operating costs and boost plant productivity.

07/01/2006


Intelligent Safety Networks (ISNs) for manufacturing are intelligent in more ways than one. These adaptable and fully programmable systems do a better job of ensuring safe machine operations than traditional hardwired safety systems, and they are also an intelligent choice for plant management, since they reduce operating costs and boost plant productivity.

At its most basic level, an ISN automatically takes an industrial process to a safe state when certain conditions are violated. An ISN features high integrity communications, stringent timing requirements, and a safety integrity level (SIL) 3 implementation (meaning a one in 100 million probability of a dangerous failure per hour). ISNs are typically based on safety PLCs and networked components. Since ISNs reside on "softwired" systems such as DeviceNet or Ethernet that are used to simultaneously control plant operations, they can be far more flexible and cost effective than the hardwired "safety only" systems they replace.

Mandatory option

While implementation of ISN is optional today, it will soon be mandatory for suppliers to some large manufacturers. General Motors has announced that its suppliers must have ISN technology implemented in equipment supplied to GM plants beginning in 2009—a mandate likely to spread to other large manufacturing companies, just as use of radio frequency identification (RFID) tags spread once Wal-Mart required its use.

GM's controls, conveyors, robotics and welding systems (CCRW) automation and controls engineering group, formed in 1997, has been leading the company's initiative to establish common engineering processes, manufacturing systems, and components throughout its global operations. The wide-ranging initiative, called Common Controls Architecture (CCA), includes machine safety technology.

According to a June 2005 report by ARC Advisory Group report ("General Motors Drives Common Architecture for Global Operations"), GM's CCRW group created monitored power systems technology as the first step toward an intelligent safety solution. The CCRW also created a task-based risk assessment (TaBRA) process to increase employee confidence in the new technology.

As a result, GM's CCRW group is eliminating costly and complex safety relays in common control panels and replacing them with smaller, rack-mounted safety PLCs supplied by Rockwell Automation. "Replacing safety relays with a dedicated safety PLC significantly reduces control panel real estate by eliminating cabling, freeing up space, and reducing the overall complexity of the panel," said the ARC report. "Moreover, since unique safety circuitry has been eliminated, this has resulted in a more common panel overall."

As with other elements in the GM CCRW technology migration plan, Intelligent Safety is being implemented in five-year "steps." The Rockwell Automation-based ControlLogix Safety PLC and Safety Network was implemented in 2004, and by 2009 GM's EtherNet/IP Safety Network should be in place.

While the CCRW has developed standards and protocol, GM is leaving ISN implementation up to its vendors. As a result, GM vendors should be budgeting for discovery and a planning budget by 2007, pilot programs in 2008, and production with ISNs in 2009 after a pre-validation process. For GM vendors, time is running short.

The timetable for emerging ISN networks is likely to span 2009-2020. As with RFID, reports of "immediate adoption" of ISN have been greatly exaggerated. With GM's mandate set to begin in 2009, ISN is likely to be fully in place and operating by 2011 in GM plants and be adopted by other manufacturers by the middle of that decade.

As a result, the time is now to ask vendors for implementation roadmaps and evidence that they will be compliant with developing ISN standards. Five major platforms for intelligent safety networks already exist or are being developed: AS-Interface "Safety at Work," PROFIsafe, SafetyBUS p, DeviceNet Safety, and EtherNet/IP Safety. Initially, these systems are unlikely to interface with each other, so vendors and users may need to work with integrators invested understanding the multiple ISN systems on the market and how to link them.

Intelligent Safety Networks provide measurable business benefits, including a safety strategy to protect people while supporting the enterprise.


Author Information
By Ed Nabrotzky, director Industry Solutions, Woodhead Industries.




The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me