Decreasing the Cost of Control

One of the most basic ways to reduce the cost of control is to reduce the number of variables. Using advanced process control (APC) can cut down the number of loops required to run a given process, which can make every aspect of control simpler.

04/20/2011


One common challenge when designing or upgrading installation is determining how to reduce costs. There are a number of factors to be considered, including development, deployment, and maintenance costs. Although many ideas may come to mind, the possibility of using advanced process control (APC) is more easily attainable due to the power of computers and new strategies that are now feasible. But what if we reduce the number of variables to be controlled? With fewer variables, less hardware is needed, the process is simpler, and it is easier to teach to others. So, how can users reduce the number of loops to control?

Often, process control systems are composed of a number of variables coupled together. Not only is effort spent on controlling variables, but also on using “fake” controllers to decouple the variables so that single-input and single-output algorithms, like the ever-present PID, can be implemented. APC now adds the strategy to control several variables simultaneously, so there is no need for decoupling. While PID is the workhorse of the control algorithms used in industry, it has limitations. First, it is a single-input, single-output system, so control engineers have to figure out how to take information from several measuring devices and combine them into a single value that makes sense for the controller. The reverse is also a challenge: how can a controller make decisions on several control variables based on the combined inputs? The most typical approach is to design several PID controllers in parallel, but this option is not without its own challenges. Since some variables are coupled, more controllers are put in place to try to isolate those variables. The challenge that comes now is tuning all those controllers that have been placed in the plant. Although there are rules to tune PID control algorithms, it is not an exact science. In the case of multivariable controllers, it is more challenging since changing one gain will affect the behavior of not only the PID loop that is being tuned, but also all the different controllers and variables that are coupled.

One example is the case of Tyco Electronics, where a coaxial cable manufacturing process was put in place. The process under consideration includes building dielectric, shield, and jacket layers on top of the center conductor wire. The dielectric layer is the most critical variable because it affects the subsequent layer diameters and their consistency. It also determines the coaxial product qualities such as impedance, capacitance, and time delay per foot. The process involves a combination of multiple input variables to control the diameter and coaxial consistency with the output variables, so a multivariable controller is necessary. The manufacturing lines run at different speeds to accommodate product requirements and equipment limitations. To make the process even more challenging, there are also variable distances between actuators and sensors. As the line speeds and distances change, time delays between inputs and outputs vary. Tyco Electronics found multivariable model predictive control (MPC) was the best choice for this application because it controls variable time delay processes while optimizing multiple output setpoints and multiple input constraints.

Dr. Kimberly Wang, principal control systems engineer at Tyco Electronics, completed modeling the process using logged data and LabVIEW modeling tools. Once the model was found, she and her colleagues used these results in a real application with further controller tuning. Dr. Wang implemented the MPC systems on more than 10 manufacturing lines with excellent Six Sigma process control levels. The control system not only controls the product quality to meet specifications, but also stops the lines automatically if the product quality is out of specification. Tyco Electronics achieved unmanned overnight production, thereby increasing productivity and reducing machine downtime. In addition, National Instruments helped set up functions that reduced coaxial final quality test time because the control system tracks the product quality and prints a label to identify whether the product passed or failed.

Vision for difficult variables

In the previous section we discussed calculations using single controllers to control multiple variables, but every control loop relies on measurements. What happens if the variable under control cannot be measured with standard sensors? Vision may be a solution.

Iggesund Workington Mill faced such a challenge in its process to analyze paperboard formation.  The mill needed to provide board machine and pulp mill operators with a current formation image coupled with a formation index. The formation index is calculated from gray-level distribution of the image, because formation is a subjective science and it is important to have a visual correlation. The display of current formation images provides the operators with the most current situation and a percentage measurement of how well the board machine and pulp mill is running. Differentiation between board and pulp variations is helpful to control board quality, classify problem areas, and assist management in assigning resources to one particular area.

The source head contains the light control unit, flash system, and illumination optics. Illumination is synchronized with the detector-head camera unit through wiring in the power track between the upper and lower head. The image control unit continuously adjusts the illumination and camera parameters to maintain the best possible image quality under varying process conditions such as speed and basis weight. This makes the modulus calculation for the total board construction extremely difficult. Thus, it is necessary to employ a predictive multivariate model that uses online measured data to calculate the bending stiffness based on process variables. Dynamic model development, using the LabVIEW System Identification Toolkit, uses a real-time proportional-integral (PI) controller to control the critical polymer chemicals dosing rate.

Imaging technology-based formation measurements are already available in the market. However, the information reported is generally confined to the individual quality index figure that indicates overall formation variation. Nevertheless, it still remains difficult to use only a single figure to deduce why formation variations occur in order to optimize the process. This is because formation is an outcome of several factors, including raw materials, process equipment, and the process operating point. It is usually easier to list items that do not affect the formation. Iggesund introduced a new approach to facilitate formation optimization: divide the formation-related image information into mutually independent descriptive subcomponents. This further highlights the actual changes of the formation in question, thus making it easier to choose subsequent corrective actions. The upgraded system replaced the traditional formation analysis method and provides the operators with real-time board quality information.

Observers for many variables

Even using nontraditional sensors, such as cameras, may not be enough to support closed-loop control since not all of the variables that need to be controlled can be measured, and not all of the variables that can be measured need to be controlled. This is an area where we could think of using “virtual variables” that are composed from other variables, which are the ones that need consideration. The use of virtual variables is driven by the fact that if you can’t measure it, you can’t control it. So how should one approach problems where measurements can’t be taken using standard or advanced sensors?  Academics in control theory have been working on this problem for years, and now, with the use of APC, these solutions can be taken into modern manufacturing systems. Variables that can’t be easily measured are present in a number of traditional industries, like steel manufacturing. When producing steel or any other heavy-duty material, there are often very harsh conditions that don’t work well with measurement systems, for example, measuring the thickness of steel coming off a rolling mill. To solve the challenge of virtual variables, a possible approach is to use observers. With observers, users can control variables that are either too difficult, or impossible, to measure. These “observed” variables can be inferred from other measured variables and/or a software model of the process under control. This type of controlled system allowed Iggesund to increase its throughput by 25%.

One problem with conventional pH process control is that variables are monitored individually, which indicates the state of only the individual variables and ignores the interaction of variables. Achieving optimal pH enhances paper quality and production process efficiency, so Iggesund used APC with multivariate techniques to take into account the internal interactions among variables. Therefore, it could model the process on detecting univariance with individual variables. This can then be compared with the univariance for combined variables to identify the true process performance, which can then be used to identify conditions when the process is unstable.

Iggesund designed and developed a model predictive control scheme using LabVIEW and artificial neural network (ANN) technology combined with advanced adaptive control algorithms for closed-loop adaptive refiner control. The model is bound within the normal operating conditions for the pulp mill. If conditions outside the normal operating conditions occur, an alarm sounds that not only indicates to an operator that there is a problem, but also provides details of what variable is at fault and the best action to resolve that fault.

National Instruments used LabVIEW to develop a pH model that demonstrates that it is possible to model a nonlinear complex process. It confirms the pH meter readings and provides a basic online diagnostic tool for operators. Because the model is only taking in the key variables that affect pH, if there is a change in the incoming flows of one of these, it is highlighted on the model. This change can be observed much sooner than normal due to process dwell time. The model aided in monitoring and optimizing chemicals to control the pH more smoothly by displaying real-time information. This increased process stability is due to improvement of the control of a process-critical variable.

Advancements in computer power, combined with the development of object process control (OPC), and improvements in software, enable engineers to use the processing capabilities of a desktop PC to control large plants with a combination of new technologies (sensors, algorithms, etc.) that improve throughput while reducing costs and optimizing the process.

Javier Gutierrez is senior product manager, control design and simulation, for National Instruments.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.