Analyzing Closed-Loop Behavior with Convolution

The repeatable behavior of a linear process allows a process controller to predict the future effects of its current efforts. As described in “Process Controllers Predict the Future” (March 2008), a controller’s predictive abilities can be reduced to a mathematical formula by conducting the following experiment: 1) Stimulate the process in open-loop mode by forcing the control...

07/01/2008


The repeatable behavior of a linear process allows a process controller to predict the future effects of its current efforts. As described in “Process Controllers Predict the Future” (March 2008), a controller’s predictive abilities can be reduced to a mathematical formula by conducting the following experiment:

1) Stimulate the process in open-loop mode by forcing the controller to apply a unity impulse ; that is, a single control effort that is one unit in magnitude and Δt seconds in duration.

2) Determine the process’s open-loop impulse response by measuring the process variable every Δt seconds after the impulse.

3) Label those measurements in chronological order as h(0) , h(1) , h(2) , etc. and construct a single infinitely long “number” H using those values as “digits”. That is, let

H = h(0), h(1), h(2),…

4) Start over and let the controller apply an arbitrary sequence of control efforts to the process. Label those values u(0) , u(1) , u(2) , etc., and use them to construct a second infinitely long number U:

U = u(0), u(1), u(2),…

5) Compute Y = H*U using convolution , which multiplies H and U together just as if they were normal multi-digit numbers. That is, use normal multiplication and addition to compute

y(0) = u(0)

y(1) = u(0)

y(2) = u(0)

and so on until the kth sampling interval when

y(k) = u(0)

+u(k-1)

Controllers


The behavior of this closed-loop control system can be predicted by constructing four “numbers”– S, D, G, and H - with “digits” consisting of sampled values of the setpoint, the disturbance, the open-loop impulse response of the process, and the open-loop impulse response of the controller, respectively.  The sequence of  process variable measurements Y that will result from any given combination of S, D, G, and H can then be computed from

Equation set #8.JPG


where the star (*) indicates convolution and the two quotients indicate deconvolution.

 

If the process is truly linear and there are no other influences affecting the process variable, then these computed values should match the actual process variable measurements that will eventually result from the control efforts U .

Conversely, the equations in step 5 could be solved for the open-loop control efforts U that would be necessary to generate a specified sequence of process variable measurements Y . That is, pick the desired values of

Y = y(0), y(1), y(2),…

and let


Equation set #1.JPG

k th sampling interval when


Equation set #2.JPG

 

This operation, known appropriately enough as deconvolution , is essentially the long division algorithm applied to dividing Y by H to get U = Y/H . See the “Deconvolution example” graphic.

Closed-loop analysis

In practice, process controllers typically compute their control efforts using algorithms more sophisticated than open-loop control, but convolution and deconvolution can be used to analyze the behavior of closed-loop control systems as well.

Consider, for example, the basic feedback control system shown in the “Analyzing feedback loops” graphic. The process variable is sampled at regular intervals, and each measurement is subtracted from the setpoint to generate a sequence of error measurements. Those are fed into a controller that, in turn, generates a sequence of control efforts chosen to drive the process variable toward the setpoint.

The resulting process variable measurements Y will equal the results of the controller’s efforts added to any uncontrollable disturbances D that might also be affecting the process. In terms of the convolution operator, that sum can be expressed as

Y = H * U + D

If the controller is also a linear process (and most are), then

U = G * E

where G is the impulse response of the controller, S is the setpoint sequence and

E = S - Y

is the error sequence. These three relationships can be combined by means of simple algebra, treating convolution just like multiplication and deconvolution just like division. That is,

Y = G * H * (S - Y) + D

or

Equation set #3.JPG

This formula predicts the process variable measurements Y that will result from any given combination of setpoints S and disturbances D when a process with an open-loop impulse response of H is controlled by a feedback controller with an open-loop impulse response of G. It is the fundamental mathematical tool used by control theorists to design controllers and analyze their closed-loop behavior.

For example, the quantity

 

Equation set #4.JPG

known as the transfer function between the setpoint and the process variable, can be used to determine how the process variable Y will react to any given sequence of setpoints S in the absence of disturbances. That is, let D=0 so that
Y = TS * S

 

StabilityTest.jpg

 

The sequence T S is also the impulse response of the closed-loop system. That is, T S shows what the process variable would look like if a unity impulse were to be substituted for the setpoint while the controller is on-line controlling the process.

This phenomenon yields a test for closed-loop stability of a feedback control system. If the impulse responses of the controller and open-loop process are both known, then their convolution product G*H can be used to compute T S . If all of the digits of T S turn out to be finite, then the closed-loop system will be stable. Otherwise, Y = T S *S will grow forever no matter what values are chosen for S , and the closed-loop system will be unstable. See the “Stability test” graphic.

On the other hand, if the setpoint S is zero and the controller is only concerned with counteracting the effects of disturbances, then

Y = T D * D

where the quantity

Equation set #5.JPG

Deconvolution.jpg

is the transfer function between the disturbance sequence D and the process variable Y . It shows what the process variable would look like if the closed-loop system were to be stimulated with a single, unity-impulse disturbance. It too can be computed from G*H , though it will typically have a different value than T S . This is why a closed-loop system’s disturbance response typically differs from its setpoint response, though if one is stable, so will the other.

The transfer functions T S and T D can also be used to design the controller if H is known and G has not already been selected. For example, if the controller will be used primarily to track setpoint changes, T S can be assigned a suitable value that will produce some desirable closed-loop setpoint response. The controller required to achieve that particular setpoint response would then be given by

Equation set #6.JPG

T D can be assigned a suitable value, and the controller’s impulse response can be set to

Equation set #7.JPG

 

Devising a controller that will demonstrate either of these impulse response sequences exactly can be a bit tricky, but there are mathematical techniques collectively known as transform theory that can help. The first step is to express G and H as fractions with numerators and denominators of finite length. For example, the infinitely long open-loop impulse response

H = 16, 4, 1,

can also be expressed as H=A/B with

A = 16

B = 1, -

in much the same way as the infinitely long decimal value 0.14285... can be expressed as 1/7. In fact, deconvolution and normal division are essentially the same algorithm. See the “Deconvolution example” graphic.

The simplified version of H can also be converted into a Z transform that can be used to analyze a closed-loop system’s behavior without having to perform any convolution operations involving infinitely long sequences of sampled data. Unfortunately, it takes considerably more mathematical expertise to understand how and why Z transforms work.

Z transforms can be converted into Laplace and Fourier transforms by decreasing the sampling interval Δt to zero. These transforms can be used to analyze the behavior of analog control systems where data is processed in a continuous stream rather than at regular intervals.


Author Information

Vance VanDoren ( controleng@msn.com ) is consulting editor to Control Engineering.




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me