Accident: Helium leak halts CERN facility tests; root cause

Arc flash punctures a cryogenic tank, damages steering and focusing magnets, and contaminates beamline. Could this fall CERN accident have been prevented? See details, photo.

11/05/2008


Geneva, Switzerland — What were the details and cause of the fall accident at CERN? Might it have been prevented? On Sept. 19, 2008, only nine days after proton beams were first circulated at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), a fault occurred resulting in mechanical damage and release of helium. A recently released investigators' report
(Review other Control Engineering CERN references and articles .)

Superconducting quadrupole electromagnets direct protons beams to four intersection points, says Wikipedia.

Superconducting quadrupole electromagnets direct protons beams to four intersection points, where interactions between protons take place. Source: Wikipedia; en.wikipedia.org/wiki/Hadron_collider .

LHC is a dual-beam synchrotron designed to accelerate protons to a kinetic energy of 7 TeV (1 TeV = 10^12 electron volts). When the beams intersect, protons collide with relative energies of 14 TeV. Superconducting magnets immersed in vaccum-insulated liquid helium tanks ( Dewars ) at an operating temperature of 1.9 K turn the beams to follow a circular tunnel with a circumference of 27 kilometres (17 mi) at a depth ranging from 50 to 175 metres underground, and to keep the beams focused. Two types of magnets are used: 1,232 dipole magnets keep the beams on their circular path, while an additional 392 quadrupole magnets keep the beams focused.
The incident occurred approximately 2 months before the facility’s planned winter shutdown, scheduled for November 2008, leaving insufficient time to repair the damage and put the facility back in operation. Repairs will be carried through the shutdown period and the facility will be operational in time to resume operations in spring 2009.
Inincident in the future are being put in place.
"This incident was unforeseen," said CERN director general Robert Aymar, "but I am now confident that we can make the necessary repairs, ensure that a similar incident can not happen in the future, and move forward to achieving our research objectives."
During power-up tests of the main dipole circuit, a fault occurred in the electrical bus connection in the region between a dipole and a quadrupole, resulting in mechanical damage and release of helium from the magnet cold mass into the tunnel. Proper safety procedures were in force, the safety systems performed as expected, and no-one was put at risk, investigators report.
During the ramping-up of current in the main dipole circuit at the nominal rate of 10 A/s, a resistive zone developed, leading in less than one second to a resistive voltage of 1 V at 9 kA. Unable to maintain the current ramp, the power supply tripped off and the energy discharge-switch opened, inserting dump resistors into the circuit to produce a fast current decrease. In this sequence of events, the quench detection, power converter, and energy discharge systems behaved as expected.
Within one second, an electrical arc developed, puncturing the helium enclosure and leading to a release of helium into the insulation vacuum of the cryostat. After 3 and 4 seconds, the beam vacuum also degraded in beam pipes 2 and 1, respectively. Then the insulation vacuum started to degrade in the two neighboring subsectors.
Spring-loaded relief discs on the vacuum enclosure opened when the pressure exceeded atmospheric, releasing helium into the tunnel. The relief valves were unable to contain the pressure rise below the nominal 0.15 MPa in the vacuum enclosure of the central subsector, thus resulting in large pressure forces acting on the vacuum barriers separating the central subsector from the neighboring subsectors.
After restoring power and services in the tunnel and ensuring mechanical stability of the magnets, the investigation teams proceeded to open up the cryostat sleeves in the interconnections between magnets, starting from the central subsector. This confirmed the location of the electrical arc, showed absence of electrical and mechanical damage in neighboring interconnections, but revealed contamination by soot-like dust, which propagated over some distance in the beam pipes. It also showed damage to the multilayer insulation blankets of the cryostats.
The forces on the vacuum barriers attached to the quadrupoles at the subsector ends were such that the cryostats housing these quadrupoles broke their anchors in the concrete floor of the tunnel and were moved away from their original positions, with electric and fluid connections pulling the dipole cold masses in the subsector from their internal supports inside their undisplaced cryostats. The displacement of the quadrupoles’ cryostats damaged "jumper" connections to the cryogenic distribution line, but did not rupture its insulation vacuum.
Pending further inspection of the inside of the dipole cryostats, investigators estimate that at most 5 quadrupoles and 24 dipoles from the three subsectors were involved, but it is possible that more magnets will have to be removed from the tunnel for cleaning and exchange of multilayer insulation. Spare magnets and spare components appear to be available in adequate types and sufficient quantities to allow replacement of the damaged ones during the forthcoming shutdown.
The extent of contamination to the beam vacuum pipes is not yet fully mapped, but is known to be limited; in situ cleaning is being considered to keep the number of magnets to be removed to a minimum. Removal/reinstallation, transport and repair of magnets will be integrated with the maintenance and consolidation work to be performed during the winter shutdown across the CERN facility.
C.G. Masi , senior editor
Control Engineering News Desk
Register here and scroll down to select your choice of free eNewsletters .





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
click me