Not all integration is created equal

To be a plant engineer is to realize the wonderful benefits of a well-automated production system – and to suffer the problems caused by a poorly designed control system. So, what makes one automation system better than another?

06/15/2008


To be a plant engineer is to realize the wonderful benefits of a well-automated production system %%MDASSML%% and to suffer the problems caused by a poorly designed control system. So, what makes one automation system better than another? And, when implementing a control system, how do you ensure you’re getting the best system for the money?

When it comes to specifying and purchasing automation services and equipment, one of the most frustrating aspects for any plant engineer is the nagging question of not knowing whether they are getting what they paid for. Questions might include: “Is this a highly specialized service?” or “Am I paying too much for a commodity I could get anywhere?”

The answer lies in the procedures and methods used when designing the system.

Large or small, any control system project carries some risk to the owner. To mitigate this risk, projects must be completed on time and within budget to ensure profitability and prevent delays and unnecessary downtime.

At Bachelor Controls, we have found three things that contribute to a well-designed control system: proper planning, contingency management and extensive validation and testing.

Project planning, information gathering

Our engineers and programmers seek to achieve good communication with clients throughout all phases of a project, with an emphasis on gathering as much information as we can from the beginning. We begin by interviewing groups and individuals who will be influenced by the result of our design efforts. This typically includes system operators, engineers, managers, IT personnel and maintenance personnel.

This deliberate, up-front communication with stakeholders allows us to determine the client’s process and how that process relates to the client’s business and project goals. With a better understanding of the project needs, we can develop a detailed description (or functional specification for more complex projects) that defines exactly what we wish to accomplish.

Contingency management

A well-designed functional specification equips the project team with a defined scope of services and project plan for managing and completing the project successfully.

With this information in hand, the project team must plan for all potential contingencies. This can be an especially difficult transition for traditional programmers moving to the controls environment. In traditional “IT-type” programming, the programmer can control the data. However, in a production environment, the system must respond to whatever data real equipment working in the real world in real time gives it. It is often this need to account for so many real-world contingencies that separates a quality, reliable system from an unreliable system.

Unfortunately, a system may appear to work upon implementation, but if the system cannot account for all abnormalities, it may be unreliable under real-world conditions. Even an unreliable system that works under most conditions will give a plant engineer a certain level of frustration and could cost the client a great deal of money in wasted product and/or downtime expense.

Extensive validation, testing

So, how do you ensure a system accounts for all the potential contingencies?

Simply put, an untested system is just that %%MDASSML%% untested. For a control system to be reliable, it must undergo testing and validation according to a structured, written plan. Without this structured methodology, an integrator can skip a few things and still produce a system that appears to work.

Documentation and extensive testing are an integral part of ensuring that the design meets all the project needs, as well as accounting for any unforeseen complications and/or conflicts. Following design development, a Factory Acceptance Test (FAT) should be conducted. A FAT allows the client to participate in a simulation and validation of the control system before it is installed at the site. This is the first real opportunity to validate that the integrator provided what was stated in the functional specification, and it reduces surprises onsite. Simulation saves time and money during start-up and ensures that the system will function effectively when abnormal situations arise.

Project follow-through, start-up

Once the system is tested, simulated and approved by the client, it is time to integrate the system onsite. Many factors can influence start-up. This is where all the up-front information gathering, continuous documentation and exhaustive testing truly pay big dividends. Early preparation and prior testing procedures mitigate problems and eliminate costly, time-consuming work onsite.

Projects can be “thrown together” for less effort and without the future of the client in mind, but you usually sacrifice the quality of the outcome when you do. When leveraging a proven, structured project methodology such as this, clients receive the best value from project planning through start-up.

Eliminating bumps in the road

We often hear those in our industry bemoan the “inevitable problems” of every project. We are also often asked how we respond when things don’t go as planned, “because every project has surprises.” However, our philosophy %%MDASSML%% and the philosophy of many other successful system integrators %%MDASSML%% is that every project does not have to have any significant, project-threatening problems. In fact, almost any project can go very smoothly when there is adherence to a structured project methodology that emphasizes up-front planning and information gathering, well-conceived contingency management and extensive validation and testing.

For more information about system integration services, or to find a system integrator certified and audited against industry benchmarks and best practices, visit the Control System Integrators Association (CSIA) at www.controlsys.org .


Author Information
Ray Bachelor, PE is president and founder of Bachelor Controls Inc. (BCI). A certified member of the CSIA, BCI was named 2008 System Integrator of the Year by Control Engineering magazine.




Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me