Consider a sensor network to ease connections

Do industrial networks meet expectations? Bypass increasing Ethernet and other network incompatibilities at the I/O, sensor, and safety level by using a widely accepted sensor network.


This 4-input and 4-output I/O module is clamped onto the AS-Interface network cable. It takes one center-mount screw to establish the data and power connection. AS-Interface devices tend to be designed for enclosure-mount applications (IP20) or as field-mUsing a sensor network can save time, money, and steer clear of increasing Ethernet protocol and other network incompatibilities at the I/O, sensor, and safety device level.

Divergent PLC protocols

During the late 1990s nearly every PLC manufacturer decided to develop a networking technology suitable for industrial applications. Modbus, Profibus, CC-Link, DeviceNet, and many others were born in short order, each promising to address the fundamental requirements controls professionals had at the time: reliability, simplicity, and deterministic real-time behavior at a price that was competitive with conventional hardwiring. This led to confusion mainly because all approaches were not interoperable.

Customers preferring a particular brand of PLC were essentially forced to use the networking technology developed by that manufacturer. If this situation was not bad enough, the whole story was repeated a few years later when each of those PLC manufacturers decided it was time to promote new networks. This time the underlying wire was Ethernet. I will not claim that one such solution is superior to another, but instead ask readers if having all these options (or should I say edicts) was such a good idea. From the point of view of device manufacturers (RFID systems, drives, HMIs, etc.), it was not.

Wasted resources

Instead of focusing on a small number of communication interfaces for RFID systems, device manufacturers had to develop a plethora of solutions, such as DeviceNet, Modbus TCP, Profinet, EtherNet/IP,  Profibus, CC-Link, and the list goes on. The same was necessary for encoders, camera systems, and many other components needed to automate a complex machine. And to make matters worse, going forward, even those protocols that share Ethernet at the physical layer will need dedicated (that is, incompatible) hardware.

Initially, the situation was not all that bad. For instance, until recently we could manufacture an RFID controller that could host four noncompatible communication protocols (Modbus TCP, TCP/IP, Profinet, and EtherNet/IP) simultaneously on the same hardware device. Customers could buy one unit, and, without making adjustments or modifications, connect it to any of the four Ethernet-based networking technologies, and control it from a PLC. In this case fewer options translates into streamlined stocking, better availability, reduced ordering errors, and enhanced familiarity when it comes to installation.

In the near future, due to certain protocol changes (promoted as advancements), this will no longer be possible. The same Profinet unit will require dedicated hardware as will the system using EtherCAT. For the time being, EtherNet/IP and Modbus/TCP can coexist on the same hardware. At this point, one may ask if it offers any advantage that those networks are based on Ethernet. In a world where engineering resources are free and deadlines do not exist, this would not be an issue. But in reality, duplicate engineering drives up costs at all levels. Is this really necessary?

Low-end compatibility

This is the latest safety controller for AS-Interface and allows the connection of up to 35 independent safety devices. This controller has two built-in electronic safe outputs and is easily capable of controlling eight independent safety zones. Courtesy:Interestingly enough, a solution exists at the sensor and machine safety level that is accepted and supported by most PLC manufacturers. While the solution is not suitable to interface devices that interchange larger amounts of data (RFID systems, drives, HMIs, etc.), it is an ideal method for bringing binary devices and safety components (like e-stops, door safety switches, and light curtains) to the PLC and give the PLC a way to control simple binary outputs (including valves, horns, and indicators).

In contrast to a multitude of Ethernet solutions, this system was (no surprise) not developed by a PLC manufacturer (and then made open) but instead is the result of a joint development effort among 11 industrial automation companies that was open from the beginning. After the basic technology was published and released, others joined this group. Involved companies are known for their PLCs, sensors, valves, and/or safety components. Introduced in 1994, AS-Interface is now the world’s most successful low-level networking technology, based on information from the [[get exact name-AS-Interface group]]]. With nearly 20 million installed field devices, it is the closest thing to a universal networking technology in the automation space. Approximately 300 vendors offer:

  • Binary I/O modules – These modules allow the switch state of any conventional sensor to be brought to the PLC. AS-interface is a real-time and deterministic technology with a worst-case sensor update time of 10 ms. (Worst-case means that 248 input states are communicated. Fewer I/O connections means faster updates.)
  • Analog I/O modules – Most industrial control systems have roughly twice as many digital inputs as outputs plus a small number of analog signals. These types of analog signals tend to be slow compared to binary data. AS-Interface allows such signals to be transmitted alongside the binary data with update times of 35 ms or less.
  • Indicators and buttons – Indicators and buttons are another type of I/O signal. Timing is not the main concern, but installation simplicity is. For instance, a four-element stack light is connected in seconds using just two AS-Interface leads.
  • Functional safety – For more than 10 years, networking functional safety devices has been the “killer app” of AS-Interface because it addresses the cost issue (it is much cheaper than a safety PLC) and the simplicity issue (it exploits AS-Interface installation advantages). In most cases, about 90% of the wires needed when constructing a hardwired safety system can be eliminated. Suddenly, designing a safety system is a simple, two-step process. First, the hardware is connected to AS-Interface, and then it connects to required logic using drag-and-drop operations.

Machine builder advantages

Machine builders appreciate other benefits. Because AS-Interface can be connected to a large number of PLC backplanes and an equally large number of industrial networks, an I/O and safety system designed for a machine controlled by a PLC from manufacturer “A” can easily (and without modification) be reused if a PLC from manufacturer “B” is used the next time. This feature makes navigating the maze of competing and noncompatible upper-level Ethernet solutions easy. Only one gateway between the PLC and AS-Interface needs to be swapped out.

AS-Interface products are available from a large number of suppliers. Due to their simplicity and unparalleled interoperability, it is not uncommon to have hardware from multiple manufacturers on the same network. A small field-mount I/O module, a valve aEnd users have enjoyed forward and backward compatibility of the network, which is one of the guiding principles of the governing organization’s member companies. For instance, if a module on 19-year-old network fails, it takes, on average, less than one minute to replace it with a new design. And it is not even necessary to use a product from the original manufacturer. The old system may not be able to use the latest features of the new module, but it will work just as well as the old part did. Similarly, if a decade-old system that feeds into DeviceNet controlled by an older PLC now must operate as part of EtherNet/IP on a new PLC, only the gateway has to be replaced.

It can hardly get any easier. And isn’t technology supposed to make automation simpler, better, and less costly? The industrial Ethernet experiment has not failed, but it unfortunately has not lived up to its potential and customers’ expectations. At least at the I/O connection and safety level, users have a choice that is universally accepted, highly interoperable, and compatible with most PLCs on the market.

- Helge Hornis, PhD, is manager, intelligent systems group, Pepperl+Fuchs. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering and Plant Engineering, 


Networking articles:

Networking products:

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me