How Gears Work

Gears are used in many mechanical devices to provide speed reduction in motorized equipment. A small, rapidly-turning motor can provide enough power for some devices, but not enough torque.


Gears are used in many mechanical devices to provide speed reduction in motorized equipment. A small, rapidly-turning motor can provide enough power for some devices, but not enough torque. An electric screwdriver has a large gear reduction because it needs torque to turn screws, but the motor produces a small amount of torque at high speed. With gear reduction, the output speed is reduced while the torque is increased.

Gears can also change rotational direction. Automobile differentials use bevel gears to turn the power from the drive shaft 90 deg and send it to the wheels.

The distance from the center of the gear to the point of contact determines gear ratio. If one gear is twice the diameter of the other, the ratio is 2:1.

Spur gears

Spur gears are the most common type. They have straight teeth and are mounted on parallel shafts. A sequence of spur gears can be used to create very large gear reductions.

Spur gears can be noisy. Each time a tooth engages a tooth on the other gear, they collide, making noise and increasing the stress on the teeth.

Helical gears

Helical gear teeth are cut at an angle to the face of the gear. More than one tooth on a helical gear system is always engaged. Contact starts at one end of a tooth and gradually slides across the face as the gears rotate.

This gradual engagement and multiple tooth contact make helical gears operate smoother and quieter than spur gears. Helical gears are usually mounted on parallel shafts, but if the gear tooth angles are correct, they can be mounted on perpendicular shafts, changing the rotation angle by 90 deg.

Because of the tooth angle, they create a thrust load on the gear when they mesh. Devices with helical gears have bearings that can support this thrust load.

Bevel gears

Bevel gears are useful when the direction of the rotation axis must be changed. They are typically mounted on shafts 90-deg apart, but can be designed to work at other angles.

Teeth on bevel gears can be straight or spiral. Straight bevel gear teeth have the same problem as straight spur gear teeth-as each tooth engages, it contacts the corresponding tooth all at once.

The solution to this problem is to curve the gear teeth. These spiral teeth engage just like helical gear teeth. Contact starts at one end of the gear and progressively slides across the whole tooth.

On straight and spiral bevel gears, the shafts must be mounted in the same plane so that the gear centers are aligned.

Worm gears

Worm gears are used when large gear reductions are necessary. Worm gears can have reductions of 20:1; some exceed 300:1.

Many worm gears have a unique property-the worm can easily turn the gear, but the gear cannot turn the worm. This difference is because the angle on the worm is so shallow that when the gear tries to spin it, the friction between the gear and the worm holds the worm in place. This property is useful for conveyer systems because the locking feature can act as a brake for the conveyer when the motor is not turning.

Involute gear profile

Today, virtually all gears use a tooth profile called an involute. This specially curved profile maintains a constant ratio of rotational speed between the two gears. As the gears spin, the point of contact moves, but the tooth profile continually compensates for the movement.

Marshall Brain, founder and CEO of HowStuff, will be at the Association for Facilities Engineering (AFE) booth Monday and Tuesday (March 5-6) of National Manufacturing Week.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safer human-robot collaboration; 2017 Maintenance Survey; Digital Training; Converting your lighting system
IIoT grows up; Six ways to lower IIoT costs; Six mobile safety strategies; 2017 Salary Survey
2016 Top Plant; 2016 Best Practices on manufacturing progress, efficiency, safety
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
What controller fits your application; Permanent magnet motors; Chemical manufacturer tames alarm management; Taking steps in a new direction
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on preventing compressed air leaks and centrifugal air compressor basics and best practices for the "fifth utility" in manufacturing plants.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
click me