High-impact assets need a team approach

Collaborative efforts can bridge maintenance and design in the asset design stage.


Photo by Helloquence on UnsplashEven in the age of the Industrial Internet of Things (IIoT), sensors, and Big Data, engineering, maintenance, and design teams work on different performance indicators. Design and engineering often interact, but maintenance teams quite often are not consulted fully during the asset design stage. 

Considering that asset maintenance costs can be 3.5% of the total asset costs—for example, for an asset worth $10 million, the annual maintenance costs could be as high as $350,000—it is surprising that maintenance teams are not deeply involved during the design stage. 

There are multiple maintenance-related decisions that are taken at the asset-design stage. For example, made-to-measure components are almost always better from a design perspective but need significant planning from a maintenance perspective. 

Another big maintenance decision is where the maintenance will take place—at the point of use (first line maintenance), near the use (second line maintenance), or at the manufacturer (third line maintenance). While each type of maintenance has pros and cons, consulting the maintenance team will provide a better situational context. 

Details like fastening technique, component materials, orientation, alternative components, and testing a component have a direct impact on maintenance frameworks. 

Lifecycle of high-impact assets

High-impact assets typically go through four stages of lifecycle: 

1. Conceptual feasibility of asset design: This is a sketch phase of the assets to get a very initial (abstract-level) technical and commercial idea of the parameters under which an asset will operate. However, the principles of an asset design remain the same. The level of asset feasibility undertaken depends on the type and nature of an asset. In some cases, multiple operating parameters are studied to identify optimum technical and commercial design. 

2. Front end engineering design (basic engineering): Once the economic, technical, and commercial parameters are identified for optimum asset operations, the focus shifts to details of the asset’s design and in particular how the asset is going to be built up—engineering design, components, material, fluid conditions, operating conditions, and life expectancy of an asset are evaluated in detail in order to come up with an asset-execution blueprint. Asset prototypes and/or fabrication are finalized at this stage. 

3. Asset build-up and start-up: At this stage, the asset is built up (custom built, in batch, or in volume) and the emphasis is to start and operate the asset as close as possible to its design conditions established in the previous step. Safe start-up and operating conditions take highest priority, followed by commercial targets.

4. Asset disposal or decommissioning: Safe, sustainable, and compliant removal from service of assets is the key focus at this stage. 

Conceptual, feasibility, and front-end engineering designs focus on asset (or plant) productivity—typical parameters that take precedence are economic feasibility, asset efficiency or asset utilization rate, production efficiency, and plant/asset start-up. Elements like cost estimate and equipment sizing continue to be a key focus. Asset maintenance in most cases is considered only in Step 2 or Step 3. 

Collaborative approach to asset design

Prasanna Kulkarni, Courtesy: ComparesoftThe core reason for the misalignment is that team structures and asset engineering tools in most cases are not aligned to appreciate the total lifecycle processes of an asset. 

Typically, teams and tools are built around the four stages (conceptual feasibility, front end engineering design, asset start-up, and decommissioning) of asset design. 

Particularly, the engineering data surrounding asset design is not used fully nor deployed across all asset stages. The approach to asset design is quite often siloed and focused on individual stages. 

Overall asset efficiency and asset information can be improved significantly by creating an overarching team—an Asset Lifecycle Team. This team can be a cross-functional team made up of design engineers, process engineers, mechanical engineers, cost engineers, and project and operations managers. Taking a holistic asset lifecycle approach opens information flow between various teams and enables a better performing asset. 

The indirect advantage of forming cross-functional teams is that the overall knowledge and skillset of your project teams will be enhanced. This is mainly due to your team’s appreciation of the different stages of asset design and asset operations. 

Asset maintenance perhaps should take more precedence in the early stages of asset design, which will hopefully have a positive effect on overall asset uptime. 

Prasanna Kulkarni is founder and product architect of Comparesoft.


Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me