Choosing the right strategy to stay on the safe side

There’s no ‘one-size-fits-all’ approach on maintenance.


Figure 1: Loss of material in the metal-sheet components of a superheater caused by sigma phase embrittlement, which resulted from using the wrong material. Image courtesy: TÜV SÜDIn recent years, the testing techniques and models for calculating and forecasting component behavior have grown in numbers and improved in reliability. Nevertheless, power stations repeatedly suffer failures and defects, sometimes of major proportions.

One of the leading causes is inadequate maintenance. Buzzwords and acronyms are no solution in these cases; only strategies tailored to the special features of the plants will be able to balance safety, costs, and benefits.

Whether leakage, cracks, wear, or operation and design errors, early identification of weak points in plants and systems and appropriate assessment can prevent many defects and unscheduled downtime and thus unnecessary costs. A requirement for this is the right maintenance strategy.

However, as the operating performance of each plant is unique, and particularly as complexity increases, there is no "one-size-fits-all" in maintenance strategies. What is important is that the strategy is customised to fit the plant and that the maintenance experts ask the right questions. Which maintenance strategies fit the company, the plant, and the maintenance organization? And which strategy is suitable at what times and for which service parameters?


Maintenance has long evolved from purely reactive failure recovery and remediation into a future-oriented service. Maintenance objectives include a high level of plant availability and operational safety while ensuring profitability. Obstacles to these objectives are increasing cost pressure and a lack of future strategies. Fundamental approaches are preventive, condition-based, predictive, and risk-based maintenance.

Preventive maintenance refers to anticipatory servicing without a conceptual framework, in which scheduled and standardized maintenance activities are carried out at fixed intervals. This form of maintenance reduces unexpected shutdowns but also replaces many components before they actually reach the wear limit. Preventive maintenance thus results in "excessive maintenance," which drives maintenance costs.

... and condition-based...

Condition-based maintenance monitors component condition to ensure timely identification of potential defects. This approach allows for timely planning of the necessary maintenance work. However, monitoring causes higher efforts and costs.

Predictive maintenance is a proactive form of maintenance which includes a conceptual framework. Possible defects are localised at an early stage and corrected as soon as possible. However, the strategy and its implementation are time-intensive and make high demands on the maintenance team.

...or risk-based?

Risk-based strategies, such as risk-based maintenance (RBM) or reliability-centered maintenance (RCM), focus on failure probabilities. Risk-based maintenance identifies the potential risks that may lead to plant breakdown and ranks them in order. Plant units or components that involve the highest risk of failure are addressed with priority. As complex technical structures, plants require systematic and practice-focused analysis.

For reliability-centered maintenance, all plant components must be analyzed for potential malfunctions and the consequences of these malfunctions defined. This approach enables the experts to select and implement the necessary maintenance measures and thus allows the best possible use to be made of different strategies while reducing costs.

Figure 2: Slag formation in the combustion chamber of a wood-fired boiler caused by temperatures above the deformation temperature. Image courtesy: TÜV SÜDContinuous improvement

Total productive maintenance (TPM) makes sensible use of production personnel. By carrying out routine maintenance and servicing of "their" equipment, they can identify possible wear or other weak points at an early stage. Preventive maintenance measures then avoid breakdowns and quality losses. This results in a continual improvement process and eases the workload of the maintenance team.

Deterministic or probabilistic?

The question of whether deterministic or probabilistic approaches are better is one of the fundamental questions in maintenance. Deterministic approaches focus on the cause and follow the "if-then principle": If x happens, y will result. Maintenance following this principle has proved effective from the point of safety technology, and deterministic methods form the basis of Germany's technology laws. On the downside, these approaches result time and again in excessive maintenance measures because of the safety factors that must be observed in design.

Probabilistic strategies, by contrast, are based on probabilities. They quantify potential risks according to their frequencies of occurrence and the severity of their consequences to prioritise maintenance measures. This reduces the costs of maintenance. However, the input data determined may be fraught with lack of precision, and in case of complex events, the approaches involve high efforts and fault-tree analyses.

Systematic and practice-oriented...

When choosing the overall maintenance strategy, the responsible parties must take into consideration the special features of the company and of the plant in question. The maintenance professionals should be aware of the conditions of operations and of the plant and include them in all their decisions. Practice in general engineering, experience, and in-depth knowledge of plants and systems are therefore important. The role of a maintenance professional today is that of a system analyst who keeps an eye on the full picture.

A carefully coordinated combination of individual strategies and tools creates the basis for practice-focused hazard assessment. This also means that "defects" need not be repaired in every case. Inhomogeneities in materials or incipient cracking that are detected with the help of non-destructive testing may not necessarily have to be repaired if fracture mechanics and risk assessments show such findings to be tolerable under the defined service parameters. Within the scope of high-quality analysis of the total system, the principle of "living with defects" is quite acceptable. Likewise, safe operation of plants of an advanced age can be continued with the help of a dedicated asset analysis and customized refurbishment and maintenance measures. This also applies to process control systems and, in particular, process control systems that are no longer produced. As long as these are functioning and their use can be continued with the help of repair strategies, these systems do not have to be replaced. well as creative and solution-focused

To deliver maximum benefits for the company and ensuring profitability, qualified maintenance needs to find creative solutions on any given day. Recruitment of committed and highly qualified maintenance personnel is therefore of crucial importance.

Management needs to be able to motivate their personnel. This is only possible in an organization based on division of labor, which leaves staff scope for action and for taking on an appropriate level of responsibility. Acceptance of tolerable risks is also part of the deal. Given this, the working atmosphere should be based on clarity, consistency, trust, and appreciation.

In the future, maintenance will increasingly focus on the prevention of failure and continual improvement of plants and systems. Systematic knowledge and practice-focused approaches will come together to ensure the best possible plant management, offering long-term operational safety and reliability as well as maximum availability.

- Hans Christian Schröder is a senior power plants expert for TÜV SÜD Industrie Service in Mannheim, Germany.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me