The third option when facing switchgear issues

Modernization may be an alternative to the common repair vs. replace choices

09/18/2013


It may be possible to leave the switchgear structure and bussing in place and upgrade the active components with the latest state-of-the-art circuit breakers. Courtesy: Schneider ElectricElectrical switchgear has two types of components that make up the system, which can be referred to as passive and active. The passive components consist of such things as the steel framing channels, cover plates, barriers, horizontal and vertical bus structures, as well as components that make up the mechanical structure of the equipment. The critical active components are the power circuit breakers or fused devices that comprise the overcurrent protective system.

Generally speaking, 20 years has been the traditional useful life expectancy for electrical power distribution equipment that has been maintained according to the electrical manufacturer’s recommendations. Of course, there are numerous installations of equipment that have been in operation for well over 20 years. In many of these cases, the equipment may appear to be working, but there are operational issues that need to be addressed.

Even with annual preventive maintenance, there may be instances where the life span is shortened. Factors to consider include the operating environment and the availability of spare parts. But there are ways not only to extend, but also to optimize the useful life of the equipment. 

Myth #1: When switchgear problems arise, the only options are to maintain the aging equipment or replace it with new equipment.

It is important to consider not just component costs, but other cost factors when looking at upgrading switchgear equipment. Courtesy: Schneider ElectricWhen faced with the repair versus replace dilemma, facility managers may now opt to modernize the existing switchgear lineup. As previously stated, both passive and active components require routine preventive maintenance to help optimize equipment reliability. As a rule, the passive components have a longer life than the active components as their structure is typically less complex.

So, why replace the entire structure when problems arise? A more cost feasible alternative would be to leave the switchgear structure and bussing in place and upgrade the active components with the latest state-of-the-art circuit breakers.

Direct replacement and retrofill modernization solutions are available for adapting the latest technology circuit breakers into a switchgear or switchboard. These solutions are available to replace a variety of low-voltage and medium-voltage OEM circuit breakers. Both options are designed to improve reliability, reduce maintenance, and increase equipment capabilities.

  • Direct replacement: Via an adaptor cradle, direct replacement circuit breakers are designed to fit into the existing switchgear cubicle with little-to-no modification to the switchgear cell. Direct replacement solutions reduce downtime since there is minimal (if any) outage on the equipment bus.
  • Retrofill: The existing switchgear cell and bus are reconfigured to accept the new circuit breaker. This option requires a longer bus outage since the internal cell is being modified.

For both the direct replacement and retrofill modernization solutions, new cubicle doors are provided to match the existing equipment and new circuit breaker face. Designs are available for any manufacturer’s switchgear.

The benefits of upgrading include:

  • Improved reliability: Dash-pot style or air break interrupting devices on existing circuit breakers may have reliability issues, and aging materials reduce equipment reliability.
  • Reduced maintenance costs: Older power circuit breakers require periodic maintenance and overhaul, which is expensive and time-consuming, and many components for existing circuit breakers are no longer supported.
  • Increased capabilities: Fault current interruption, trip unit accuracy and repeatability, arc flash limiting circuit breaker availability, and power metering, monitoring and communication availability. 

Myth #2: The cost is too high.

If replacing the existing switchgear, there are a number of costs to consider in addition to the purchase price of the new equipment, such as: 

  • The cost of demolition and removal of the existing switchgear lineup equipment and the associated contractor labor hours.
  • The potential disruption to the facility’s processes and workflow during the course of changing out the equipment. Unless process loads can be rerouted temporarily during the demolition of old equipment and installation of the new equipment, the cost of lost production can be substantial.
  • An often overlooked consideration is conduit placement. Installing new switchgear (which is usually smaller than the older/obsolete equipment it is designed to replace) requires that existing conduit above and below the equipment be moved. As such, the cables may have to be spliced or replaced, also adding to the cost. 

Don’t overlook factors such as conduit replacement or maintenance practices on the switchgear when considering how to best upgrade the equipment. Courtesy: Schneider ElectricA direct replacement or retrofill solution minimizes these expenses. There is no demolition of the existing lineup. The disruption to production is minimized, and may even be reduced to the time to rack out the old circuit breakers and rack in the new direct replacement units.

The modernization solutions eliminate the time-consuming, expensive task of moving conduits and replacing cables because the footprint of the existing equipment remains intact. Cables do not need to be touched, eliminating the possibility of damage. 

Myth #3: If the equipment is modified, the UL mark will be void.

The UL mark indicates the OEM product left the factory complying with industry adopted levels of safety and performance, generally the applicable UL standard and the NEC. Modification of the equipment does not necessarily void the UL mark. Many products are designed to be modified in the field, such as cutting holes for conduit entry.

Regardless of whether repair, replace or modernization is chosen, the goal is the same: improved reliability and lower life-cycle costs. Courtesy: Schneider ElectricIt is the responsibility of the authority having jurisdiction to assess the acceptability of the field modifications or to determine if they are significant enough to require one of UL's Field Engineering Services staff to evaluate the modified product. It is not possible for UL to confirm that the product continues to meet the applicable certification safety requirements unless the field modifications are specifically investigated by UL. For a fee, UL will perform a field inspection of the newly installed circuit breaker(s) and field certify the equipment.

Electrical equipment and power distribution systems have never been designed to be or intended to remain perpetually energized without interaction by the owner. Depending on when the switchgear was installed and how it has been utilized, the equipment may be in a condition somewhere between satisfactory performance and nonfunctional. The latter usually occurs as equipment approaches the end of its expected design life. If maintenance has not been regularly performed, this less-than-satisfactory condition may be entered prematurely, and a shortened useful life of the components may be the result.

While the direct replacement and retrofill options are two different modernization solutions, they provide the same end result: improved power system reliability and lower lifecycle costs.   

Key Points

  • Among the factors to consider when reviewing the lifecycle of switchgear are the operating environment and the availability of spare parts.
  • The benefits of upgrading switchgear include improved reliability, reduced maintenance costs and increased capabilities.
  • Modification of the equipment does not necessarily void the UL mark. In fact, for a fee, equipment and be recertified after modification.


The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me