The quest to find the ‘perfect’ bearing fit

Measuring is critical to the reliability of rotating equipment.

10/02/2015


Fretting can be seen in the bearing housing and on the outer race. Courtesy: EASAMuch has been said and done to produce the "perfect" fit for rolling element bearings in motors and other rotating equipment. Assembly of these machines requires that either the inner fit to the shaft (journal) or the outer fit to the housing (bore) is able to slide; so if one fit is tight, the other must be loose. While "tight" and "loose" are relative terms that must be defined in the quest for the perfect fit, any fit that's too loose or too tight can lead to early bearing failure and costly downtime.

A tight (interference) fit is usually recommended for motor bearing journals. Standard fits for radial ball bearing journals range from j5 to m5; the standard housing fit is H6 (see Table 1). These are the "standard" fits and may be different depending on the machine designer's understanding of the application.

Table 1 also shows that the tolerance band generally widens as bearings get larger, and that the journal fit is always interference (shaft journal is larger than bearing ID), while the bore fit is always line-to-line (housing bore is the same dimension as bearing OD) to loose (housing bore is larger than bearing OD).

Extreme care when measuring

Interference fits and loose fits are expressed in "tenths" (a unit equal to 0.0001 in. or 2.54 microns; μm), a level of precision that requires extreme care to measure accurately. A recent study involving 16 machinists in nine service centers found that experienced machinists with calibrated, well-maintained micrometers should have no problem measuring journals within ±2 or 3 tenths (±5.1 μm to 7.6 μm). The same study, however, found that 25% of the measurements of certified master rings of known dimensions were off by 10 tenths to 20 tenths [0.0010 in. to 0.0020 in. (25 μm to 51 μm)], in most cases due to lapsed calibration intervals and improper use of machinists' standards.

A note: Typical calibration intervals are 1 year; determine what is appropriate for your facility or the service center you use. There should also be written calibration procedures to follow. The best machinists compare each tool to the standard gauge each time they use a different one. Good practice indicates checking each tool at least once each day it is used. Proper technique is the other part of the equation. This method verifies both the tool and the user.

Table 1 is derived from Table 2-13 of ANSI/EASA Standard AR100: Recommended Practice for the Repair of Rotating Electrical Apparatus. See Standard AR100 for additional radial ball and roller bearing sizes. Courtesy: EASA

Bearing journals

Figure 1 illustrates the importance of precise measurement for the journal fit of a 6210 bearing for which the acceptable limits are 1.9686 in. to 1.9690 in. (50.002 mm to 50.013 mm). For example, if a machinist measures 1.9687 in. (50.004 mm), the measurement appears to be acceptable. However, if the machinist is only able to measure to within ± 2 tenths (± 5.1 μm), the confidence factor that the measurement is in tolerance decreases to 75% of the capability, because only 3 of 4 tenths will fall within tolerance-i.e., everything from -1 tenths to +2 tenths will be in tolerance while -1 to - 2 will not. For example, 1.9687 in. to 0.0002 in. = 1.9685 in. and would be out of tolerance.

A journal fit that is too tight will preload the bearing (reduce its internal clearance), which will increase the friction and temperature and lead to premature bearing failure. It is also important not to exceed the tolerance in the other direction. If the fit is too loose, it will allow movement ranging from micromotion to the bearing spinning on the shaft. The latter usually results from the combination of a loose fit and an increase in the internal friction of the bearing.

Increased internal friction may have several causes including poor or degraded lubrication, bearing race damage, and excessive preload. If this type of damage occurs, the bearing eventually will spin even if the fit was originally in tolerance.

Bearing housing bores

The same principles apply to bearing housing bores. If the fit is too tight, the bearing can be damaged during an aggressive assembly attempt (i.e., a large mallet). If it is too loose, there may not be enough friction between the outer race and the bearing housing bore to prevent movement ranging from micromotion to the bearing spinning in the housing. It is also possible for the fit to be within tolerance at ambient temperature but expand at operating temperature, allowing the bearing outer race to move, especially with aluminum housings.

Measurement tolerance (red lines indicate potential measurement error). Courtesy: EASA

Effects of small motions

Micromotion occurs when a variable load is applied and there is room to move. Though limited to an extent by the fit tolerance band, it can still happen under the right conditions because the housing bore is loose by design.

Radial load tends to inhibit micromotion, and a strong, consistent radial force can "pin" the bearing race to the bore. But the weaker the force, the greater the likelihood that the micromotion will occur (e.g., a perfectly aligned, direct-coupled application theoretically would have no radial load).

Micromotion causes fretting (mechanical wear at the surface), which will appear as small rusty patches on the bearing inner or outer race, or on the housing or shaft (see Figure 2). Because the oxidized areas are usually harder than the bearing surfaces, fretting can accelerate mechanical wear. Under the right circumstances, fretting can occur on either fit. Bearing fits are critical to the reliability of rotating equipment. Application conditions including the type of driven load, the connection to that load (direct coupled or belted), and the proper bearing for the application are all factors to be considered in achieving the correct fit.

It is of utmost importance, however, that machinists use properly calibrated measuring tools and the correct techniques to ensure accurate measurement of these precision tolerances. Not only must the gage be calibrated according to the appropriate schedule, but also it should be compared to the standard regularly—at least daily.

If these measures are taken and fretting still is a problem, several anti-fretting compounds are available on the market. Talk to your bearing vendor.

Jim Bryan is a technical support specialist at the Electrical Apparatus Service Association (EASA), St. Louis. A CFE Media content partner, EASA is an international trade association of more than 1,900 firms in 62 countries that sell and service electrical, electronic, and mechanical apparatus.

Table 1. Bearing fit tolerances (shaft fits are lowercase, housing uppercase).

The Bottom Line:

  • While "tight" and "loose" are relative terms that must be defined in the quest for the perfect bearing fit, any fit that's too loose or too tight can lead to early bearing failure and costly downtime.
  • There should also be written calibration procedures to follow. The best machinists compare each tool to the standard gauge each time they use a different one. Good practice indicates checking each tool at least once each day it is used. Proper technique is the other part of the equation. This method verifies both the tool and the user.
  • Bearing fits are critical to the reliability of rotating equipment. Application conditions including the type of driven load, the connection to that load (direct coupled or belted), and the proper bearing for the application are all factors to be considered in achieving the correct fit.

Key Words

Here are some of the articles at www.plantengineering.com, KEYWORD: BEARINGS that further discuss this topic:

Procedures For Protecting Electric Motor Bearings

Contamination can dramatically shorten bearing life and lead to costly downtime. Maintenance professionals should be knowledgeable about the effects of contamination and well-trained in the procedures to prevent it. There are five basic ways to maintain bearings and reduce the number of failures caused by contamination.

Debunking the myths around bearings

The wheels of industry turn on bearings, so why do the wheels often vibrate, clatter, squeak, drag, and overheat? Bearings can fail for lots of reasons. Most failures are related to lubrication and contamination, but myths and misconceptions handed from one generation of maintenance engineers to the next help perpetuate many easily avoidable problems. These myths fall into three general areas of bearing use: installation, misapplication, and lubrication. 

Solutions to fan and blower bearing problems

Fans and blowers are simple pieces of equipment, yet require a lot of maintenance, particularly for bearings. The higher the speed, the more problematic they become. This article details how to avoid common problems caused by the improper selection of pillow block housings, seals, bearings, lubricant and lubrication systems. 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me