Considerations for using VFDs with standard motors

End users desire speed and/or torque control procure and install VFDs to modify existing applications where a standard-induction motor is in place. There are a few areas of concern involving misapplication of a standard induction motor.

12/02/2016


Motors that meet the requirements of NEMA: MG1 Part 31 are designed for use with variable-frequency drives (VFDs). Motors that meet the requirements of NEMA: MG1 Part 30 may be suitable for inverter duty if appropriate measures are taken such as line conditioning. End users desiring speed and/or torque control often procure and install VFDs to modify existing applications where a standard-induction motor is in place. Frequently, they try to control costs by using the existing motor. There are a few areas of concern involving misapplication of a standard induction motor.

Motors meeting the requirements of NEMA Std. MG 1, Part 31, have defined speed-torque characteristic. Courtesy: EASAAn induction motor with fixed voltage applied to machine terminals results in acceleration according to the machine dynamics. Courtesy EASA

Speed-torque characteristics

Motors meeting the requirements of NEMA: MG 1 Part 31 have defined speed-torque characteristics which is shown in Figure 1. Figure 2 shows a typical speed-torque curve for an induction motor with fixed voltage applied to the machine terminals that results in acceleration, according to the machine dynamics. Point 3 in Figure 2 represents the speed at rated or full-load torque and corresponds to Point 3 in Figure 1. Using a standard induction motor with a VFD without proper evaluation to determine Points 1, 2, and 4 from Figure 1 introduces the potential for overheating in the lower speed range (below Point 3) and mechanical damage from over speeding (beyond Point 3).

Shaft currents

Shaft currents are another major concern. The high-switching frequency associated with inverter operation produces a capacitive coupling between the rotor and stator, which can lead to shaft currents that damage the bearings and lubricant. Motors designed for this type of operation are often constructed with insulated bearings and shaft-grounding brushes. These modifications can often be made to standard motors.

End users desiring speed and/or torque control procure and install VFDs to modify existing applications where a standard-induction motor is in place. There are a few areas of concern involving misapplication of a standard induction motor. Courtesy: EASAStandard-induction motor stator windings usually are not insulated for use in VFD applications. Most machines designed for inverter duty use a modified magnet wire. The ground insulation may also be enhanced, and more robust coil bracing is common.

Installation

It's important to establish a low-impedance, common ground between the motor drive and electrical system. Cable manufacturers have designed products specifically for this purpose (see Figure 3).

Mike Howell, EASA Technical Support SpecialistService centers can modify existing machines to address potential issues with bearing insulation and stator-winding insulation. However, defining a speed-torque curve to a standard motor, as shown in Figure 1, isn't an easy task. Variable-torque loads such as fans and centrifugal pumps,are less risky candidates, providing the maximum operating speed doesn't exceed the motor's base speed. Constant-torque loads like conveyor belts would be more susceptible to overheating in the low-speed range. The most conservative approach is to procure an inverter-duty motor that's appropriate for the application. If the goal is just to limit starting current, a simpler option is a variable-voltage, fixed-frequency soft starter.

-Mike Howell is a technical support specialist at the Electrical Apparatus Service Association (EASA). EASA is a CFE Media content partner. 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
Safety standards and electrical test instruments; Product of the Year winners; Easy and safe electrical design
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Diagnostic functions for system safety; Specifying industrial enclosures; Effective decision support for a crisis
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Natural gas for tomorrow's fleets; Colleges and universities moving to CHP; Power and steam and frozen foods

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me