Composite pipe repairs gain acceptance

Composite repairs have gained greater acceptance among asset owners and equipment operators because they provide an engineered, durable, and affordable solution and they comply with international engineering standards.


Composite repairs have gained greater acceptance among asset owners and equipment operators because they provide an engineered, durable, and affordable solution and they comply with international engineering standards.

Three-component composite repair systems are typically composed of paste grade material, resin, and reinforcement sheet. As the composite repair system must form a bond with the substrate to be repaired, it relies upon the adhesive quality of the base material or resin for its strength. Paste grade epoxies can be used as base materials based upon their excellent adhesion, mechanical properties, and erosion-corrosion resistance when compared to other nonmetallic systems such as polyurethane, methacrylate, alkyd, vinyl, and polyester-based polymers and resins.

A resin film is applied to the reinforcing sheet to eliminate wicking and capillary failure modes along the fiber strands of the reinforcing sheet. The reinforcement sheet are usually made out of carbon or glass fibers. Carbon fiber sheets are more costly, more rigid, and difficult to cut, design, and apply, in comparison with glass fiber. Glass fiber is less rigid, often increasing the long term cycling performance for such a solution.


Repair standards

The growth in acceptance and usage of composite repair systems is inherently related to the availability of standardizing documentation. Two of these standards are ASME PCC-2 and ISO /TS 24817:

·                     ASME PCC-2: Repair of Pressure Equipment and Piping

Article 4.1 provides the requirements for pipework and pipeline repair using a qualified nonmetallic repair system. It defines repair systems as those fabricated of a thermoset resin used in conjunction with glass or carbon fiber reinforcement among other allowed materials.

It provides guidance in assessing defects stemming from external corrosion involving structural integrity damage or not, internal corrosion, and leaks. The standard covers the methodology to follow for designing such repair systems, along with some other design considerations such as external loads, cycling loading, fire performance, electrical conductivity, cathodic disbondment, and environmental compatibility.

·                     ISO/TS 24817 “Petroleum, Petrochemical And Natural Gas Industries-Composite Repairs For Pipework-Qualification And Design, Installation, Testing And Inspection”

This standard covers the requirements and recommendations for the design, installation, testing, and inspection for the external application of composite repairs to pipework suffering from corrosion or other source of damage. This is damage commonly found in the oil and gas industry.

This standard defines composite repair laminates as those with carbon, glass, polyester, or any other similar sort of reinforcement material in a polyester, vinyl ester, epoxy, or polyurethane matrix. The standard also provides mathematical guidance in assessing external and internal corrosion problems with or without structure integrity damage.

While both standards give extensive information and guidance on how to design, apply, test, and inspect composite repairs systems, the ISO/TS 24817 standard allows for the application of repairs onto more complex geometries such as damaged clamped surfaces, bends, T-shaped piping, reducers, flanges, and cylindrical vessels among others. It also considers the repair expected lifetime in the design equations.



Compliant composite repairs differ from other traditional noncompliant repair systems. Not only do compliant composite repairs rely on a pre-qualified material and pre-defined mathematical design but also on competent application craftsmanship. That is why all personnel in charge of the execution, inspection, and design of such repairs shall be properly trained and validated by the composite repair manufacturer. The validation process is addressed to train and certify installers, supervisors, and designers of composite repair systems.

Potential installers and supervisors get off-job training and initial validation in a training environment where they get theoretical and practical instructions in the installation and supervision of composite repair systems. Installers complete a test piece repair that is inspected and destructively tested to determine how well the repair was performed..



Composite repairs can be designed for type A and B defects. Type A defects are those within the substrate, not through-wall and not expected to become through-wall within the lifetime of the repair system (Picture 1). This type of repair is considered to be relatively easy as it only requires structural reinforcement.

Type B defects compromise the structural integrity of the system and require through-wall sealing as well as reinforcement (Picture 2).

This is why they are considered to be more complex repairs. The geometry of the repair can range from a straight pipe section, bend, tee, flange, reducer, to a cylindrical vessel. The level of complexity in the repair will increase in the same order.

Once the type of defect and geometry of the repair are confirmed, the designer calculate the repair parameters: the thickness of the composite repair, the axial extent of the repair, and number of required wraps.



Prior to the application, the surface must be prepared and contaminants removed. The composite application should begin as soon as the surface is prepared. Application should commence as soon as the surface preparation activity has been completed.

The first layer of paste grade material is very important as it levels the substrate, which is likely uneven or pitted due to external corrosion. Without this paste grade material, the reinforcement sheet would be less likely to bond with the substrate. This is why the paste grade material should be pushed deep into the substrate profile in order to minimize the risk of air entrapment.

The reinforcement sheet should then be wetted with the resin and wrapped over the first layer of paste, maintaining a pre-fixed degree of overlapping thorough the axial extent of the repair. In order to achieve intimate contact between layers, firm hand-pressure should be exerted in every wrap.

The angle at which the reinforcement sheet is laid should be alternated in every wrap to make the fabric fibers as multidirectional as possible, hence ensuring that the repair is strong in all directions.

The same procedure should be repeated until the required wraps and composite repair thickness are achieved. The final layer should be of paste grade material to ensure that the last reinforcement sheet wrapped around the repaired surface is completely covered and is therefore protected from mechanical damage. Picture 3 depicts a three-component composite repair after completion.



Three-component composite repair systems allow the asset owner and/or equipment operators to restore weakened and/or damaged substrates by means of an engineered and compliant solution. These systems are designed to extend the lifetime of piping systems and substitute temporary repairs.

Good communication among all personnel involved in the composite repair process is fundamental in bringing the repair to fruition. Composite repairs are indeed the right solution for extending the lifetime of equipment in an efficient and reliable manner.


Osmay Oharriz, C.E. has worked at Belzona, Inc for twoyears. He is responsible for the Oil & Gas Industry and is an integral part of Belzona’s Engineering team. He can be contacted at ooharriz(at)

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.