Wireless network: Field testing benefits

05/23/2013


Troubleshooting networks

No matter how carefully you planned and installed your wireless network, some problems can still exist. Some potential problems to look for are interference and the voltage standing wave ratio (VSWR).

Sometimes correcting these issues is as simple as tightening a connector. In more advanced cases, you will need to perform a spectrum analysis to ensure the intended wireless data is not being saturated by noise. Next, test the cabling by testing the VSWR.

VSWR

VSWR refers to a mismatch of impedance between the transmitter and the load impedance (antenna). To achieve maximum power, the load impedance (antenna) and the generator impedance (radio) must match. Ideally, the VSWR is 1:1, or a perfect impedance match. This would allow for a maximum power transfer from the radio to the antenna. Unfortunately, this ideal case is physically impossible.

The next best solution is matching the line to antenna impedance as closely as possible. This will at least minimize power losses. Any impedance mismatch will cause a standing wave in the opposite direction of the forward power on the transmission line causing interference to the forward power. This will result in a voltage maximum and minimum at one-quarter wavelength increments. The greater the amplitude of these maximums and minimums, the greater the signal attenuation will be.

A watt meter can measure the forward and reflected power of a transmission line. Most watt meters measure forward power as the sum of both the forward and reflected power. This is typically done by having the tuning element pointed in the direction of the antenna. To measure reflected power, turn the element so that it points toward the transmitter. A maximum VSWR of 1.5:1, or 5% return, is recommended for optimal system performance. A ratio greater than 1.5:1 indicates a problem in the cable-to-antenna terminations.

Figure 3 displays three wave forms:

  • Incident wave
  • Transmitted wave
  • Reflected wave

Figure 3: Waveforms present in the coaxial cable and transmitted from the antenna display what happens when VSWR is present. Vertical red line represents impedance of cable or other components on the line. Courtesy: Phoenix ContactMost VSWR problems are due to loose connections that are not fastened correctly or are not weather-proofed. An easy way to prevent problems is to seal each junction with weatherized, vulcanizing tape. This simple step not only keeps water from getting into the cable line, but will also keep the connectors fastened.

After cables are installed, the engineer should run a VSWR check on all cables. If the cables were connected in the field, they must be tested to ensure proper connections.

Testing differences

After the initial planning and selection of the best radio system and components for the intended site, conducting a field test is very important. Most suppliers can assist in this step to ensure a final installation is the best and most reliable up-front, thus reducing troubleshooting efforts later.

A field test can also assist you in learning more about the products’ features and functions. For example, radios from all manufacturers are programmed slightly differently, so ensuring that you know how to program the specific radio being installed makes installations much simpler.

Performing a thorough field test can ensure long-term communications success.

- David Burrell is wireless product specialist, Phoenix Contact. Edited by Mark T. Hoske, content manager CFE Media, Control Engineering, Plant Engineering, and Consulting-Specifying Engineer, mhoske@cfemedia.com

ONLINE

www.phoenixcontact.com 

Read more Control Engineering wireless articles and case studies.


<< First < Previous Page 1 Page 2 Next > Last >>

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me