Wireless evolves to meet a new range of challenges

Efficiency and productivity on the plant floor are crucial components to delivering consistent product quality, minimizing downtime, and improving customer satisfaction.


When using wireless network systems to enhance communication capabilities between plant devices and personnel, manufacturers can increase overall process automation, improving efficiency and productivity. By eliminating the wire limitations experienced with conventional systems, wireless networking systems provide improved data logging, process monitoring, and control, while maintaining the highest level of security and integrity.

Further, today’s advanced communication technologies work together to ensure reliable and deterministic signal transfers, enabling these systems to integrate with almost any application. With their highly diverse performance capabilities, ranging from temperature/pressure control and position detection to error proofing and machine monitoring, wireless systems can seamlessly meet manufacturer’s ever-evolving requirements.

Compact, power-efficient

Most modern, well-designed remote monitoring solutions offer reliable wireless communication by integrating most of the necessary components into a single, palm-sized, inexpensive unit. A radio, power controller, RTU components, and I/O terminals contained within a single housing rated for outdoor use eliminates the need for an additional enclosure.

Figure 2. Honeywell’s wireless mesh network architecture uses externally powered multinodes scattered throughout the coverage area. Courtesy: HoneywellThese wireless industrial I/O devices are compact, easy to install, and easy to move to a new location when the application requirements change. A single wireless I/O device can collect both digital and analog sensor readings and forward this data to a central collection point for analysis. The ability to form large-scale networks to log and track data across a wide area creates new opportunities for managers and plant operators to identify trends that need an immediate response or provide the information needed to make decisions regarding equipment use or personnel assignments.

To accommodate remote monitoring needs in locations without power, optimized wireless I/O devices using advanced power management technology operate from a single battery pack for several years. State-of-the-art power management systems are configured to extend battery life up to 10 years by engineering the radio system to operate in a low-power mode that consumes very little power.

The power management system periodically samples the sensor and report data at defined intervals. Depending on the needs of the monitoring application, the sensor sampling intervals can be configured to sample data a few times a second for a quick response, or a few times an hour to maximize battery life. Typically, a five- to 10-year battery life can be achieved by optimizing the sensor’s sample rate to preserve power and still provide constant radio communication.

Wireless systems improving process automation

One of the most common needs in any industrial environment is process monitoring. Formerly, process monitoring was a time-consuming process and required manually collecting data for later analysis. In many cases, this data could not be analyzed until hours or days later when the opportunity for increased efficiency had passed.

Figure 3. A wireless site survey addressed the coverage area desired at the Gallup refinery, existing power and network infrastructure, and interfering and operating frequencies currently in use or ambient in the environment. Courtesy: HoneywellIn one example application, a cardboard goods printer struggled with an inability to track machine operators’ efficiency and performance as measured against standard production rates. Decreases in efficiency and the availability of unused machinery were not accounted for until the end of the month when the operator data was manually entered into a spreadsheet.

Instead of relying on manual data collection, the printer used wireless technology to monitor job start and stop times, parts totals, and average run time. As jobs were completed, a light above the machine signaled the operator and an e-mail was sent to notify the manager.

The wireless efficiency monitoring system increased productivity by 20%, resulting in payback on the deployment costs within 12 months of installation. Idle machines were better used and operators were able to correct per job efficiency numbers sooner thanks to the instantaneous data capture and calculation/display. Plant management felt they had information at their fingertips on which to base corporate decisions regarding capital equipment and personnel investments.

Figure 4. An optimized wireless infrastructure with narrow band radio frequency hopping ensures maximum performance. Courtesy: HoneywellIn a similar example, lack of production data meant that managers were unable to determine the exact cause of productivity shortfalls. Machine operators blamed machine downtime for the failure to meet production goals, and maintenance personnel blamed operators for working too slowly. To determine where the problem was, this facility needed to accurately measure and report machine run time to a control location for analysis.

Wireless technology was used to automatically collect real-time data. Accurate work time was gathered at the welding machine and wirelessly transmitted to a central control location for logging without running new data wires or interfering with the layout of the production line. Based on this new, real-time data, the facility managers were able to accurately verify when the delays were the result of machine downtime and when they were the result of operator inefficiency, and make corrections to improve the overall manufacturing process.

Decreasing energy use

Wireless technology can be used for more than production data collection; it can be an integral part of a company’s commitment to improving the energy efficiency of a plant.

MultiHop radios transmit data back to a central location with a PC-based controller, eliminating the need for line-of-sight between the ponds and the control location. Courtesy: Banner EngineeringSeveral applications of wireless technology have been used to monitor and control energy use in production facilities, including shutting down cooling equipment that had been left on after work hours, minimizing the use of heavy electrical use equipment during peak use hours, or cycling cooling equipment on or off based on a specific need instead of a timer.

In one case, a large manufacturer was being billed about $50,000 a month in peak use penalties and wanted to improve its energy efficiency to avoid these charges.

The manufacturer had installed a “smart” power system to keep the power efficiency between 95% and 100%. The plant’s power was switched through six large banks of capacitors located about 100 ft away from the building. Unfortunately, the data collection for the system was done manually only a few times a day, preventing operators from knowing they were drawing more power than desired until someone manually checked the system.

A wireless monitoring and notification system was used to monitor the energy use and automatically alert personnel as soon as energy use drifted outside the desired range, eliminating the need for someone to manually check the power system several times a day.

In a similar installation, wireless technology automatically monitors the operating status of a large chiller unit and triggered an alarm before the chiller unit could overheat and damage expensive equipment.

Banner SureCross Wireless automated solution provides accurate pond level monitoring and prevents accidental release of untested water. Courtesy: Banner EngineeringIn these applications, the wireless network was able to save money and energy quickly enough to pay for the investment in wireless technology within a few months of installation.

Whether your process engineering application needs to be a cost-effective solution for single-point monitoring or include hundreds of data points, the new generation of wireless products and sensors offer reduced installation time, multiyear battery life, reliable radio communications, and simple integration into existing plant-wide control systems. These new wireless networks offer a simple solution to increase productivity and reduce overhead costs without sacrificing ease of use.

Schnelbach is technical content architect for Banner Engineering’s SureCross Wireless Product Division.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me