Why some industrial organizations find benchmarking difficult

Benchmarking, in the simplest terms, involves comparing performance to peers, understanding gaps in operations, and taking steps to close those gaps and improve performance. Unfortunately, it is not as simple as it sounds.

03/06/2013


The concepts behind benchmarking research for industrial operations have been applied successfully by many leading organization in the world. However, many companies still struggle with the basics. Benchmarking, in the simplest terms, involves comparing performance to peers, understanding gaps in operations, and taking steps to close those gaps and improve performance.

 

 Unfortunately, it is not as simple as it sounds. Below are the top three challenges I’ve seen industrial organizations face while benchmarking operations.

 

 

 

Granularity: Benchmarking research is too general or too specific

 

Often the topic that needs to be benchmarked is too general or too high level, which makes it difficult to take specific steps for improvement. A good example of this is benchmarking “operational excellence.” This means many things to many different companies and it’s difficult to garner real, actionable steps for improvement when companies look to benchmark such a topic.

 

On the other extreme, there’s a similar issue if the business process that needs to be benchmarked is very specific. For any benchmarking process to be successful, it’s critical to understand how the outcome of the process impacts the key goals of the division or plant or even the overall organization. This, in turn, means specific is good, but that can make the quest for data very challenging.

 

A good example of this would be trying to benchmark the throughput and mean time to failure metrics for a very specialized piece of machinery in a specialized industry. All I can say is good luck getting a statistically relevant sample in such a case.

 

 

 

Data: Availability, quality, statistical relevance, and more.

 

The second key challenge with benchmarking industrial operations is data. If all data had the following characteristics, benchmarking projects would almost always run smoothly:

 

  • Easily available

  • In one central location

  • Using common definitions

  • Having a statistically relevant sample size

Unfortunately, this is not the case and it takes a lot of hard work to get there.

 

For example, if you’re planning to benchmark the quality processes of five plants in North America, and there is no consistency in the way data is collected across these plants or how metrics are defined, it will be an uphill battle. In such a case, it becomes very challenging to effectively execute the benchmarking process internally and even harder to do it externally.

 

Getting value from the results

 

The final challenge has two parts and focuses on the way the results of the benchmarking process are utilized. This stage is often more important than the benchmarking process itself.  If what you learn from the results of the benchmarking process isn’t applied to the business, the entire exercise may have been done in futility.

 

The first challenge is in understanding which actions need to be taken based on the results and also how to execute these actions. To accomplish this effectively there needs to be buy-in from all levels of the organization as well as the right culture in place to accept the change due to the new actions.

 

The second part of this challenge lies in answering the question, “What happens next?” Organizations that think about the benchmarking process as a one-time exercise are likely to fail. The key to the success of any benchmarking process is in setting up a culture and process of continuous improvement.

 

The real value of a benchmarking exercise is delivered when you learn from the results of the program, apply those recommendations, track the success of the actions, and continuously improve based on the results of those actions.

 

Matthew Littlefield is principle for LNS Research will be holding the first meeting for the Global Quality Advisory Counci in March. For more informnation, click this link.



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me