Why do hydraulic systems get hot?

Applying reliability principles to system design may offer an answer.


The hydraulic cylinder. Courtesy: Motion Industries and FLIR SystemsIs it really possible to design reliability into a hydraulic system? Let's consider one of oldest problems that plague many hydraulic system designers, reliability engineers and maintenance technicians. They ask, "My hydraulic system is running hot—what's causing that?"

First, we must understand that hydraulic horsepower either goes to work as energy or is wasted energy in the form of heat. If a hydraulic system is designed to be efficient and is operated and maintained properly, it won't get hot.

There must be a pressure drop for oil to flow in a hydraulic system. However, there are certain pressure drops that are unnecessary and create a given amount of heat. If you look at the pressure drop for a half-inch standard 90-degree fitting with a 22.10-psi drop per fitting and then compare that to the pressure drop of a long-radius 90-degree fitting, it is significantly less at 2.98 psi drop per fitting.

For illustrative purposes, let's say we have heat or wasted horsepower in a circuit with a pump discharge flow of 25 gallons per minute.

Standard 90-degree fitting

With a 22.10-psi drop multiplied by 25 gallons/minute (gpm), divided by a 1,714-psi constant, you get 0.322 wasted horsepower. Multiply that by 2,545 Btus/hour per 1 hp, or by 819.5 Btus per hour of heat that will be generated as a result of using this type of fitting.

If you think that is insignificant, go out and count the 90-degree fittings in one of your circuits. I think you will be surprised at the amount of heat being generated for no apparent reason. If your circuit had 20 of the 90-degree fittings, that would generate 16,390 Btus of heat that your system was not designed to eliminate.

At this point, many clients ask for a heat exchanger to "mask" the real problem of a system that wasn't designed properly. If you really think about it, you are paying extra money to produce this additional heat, and then paying more money to eliminate it with a cooling device. What you are paying for is the expenses of extra horsepower for an air-type cooler, the cost of treating the water with a water-type cooler, plus installation and maintenance.

the temperature of the hose leading to the standard 90-degree fitting at 134° F The actual temperature of the fitting itself at 137° F, which indicates a 3° F temperature rise per fitting. Courtesy: Motion Industries and FLIR Camera

Long-radius 90-degree fitting

With a 2.98-psi drop multiplied by 25 gpm divided by the 1,714-psi constant, you get 0.043 wasted horsepower. Multiply that by 2,545 Btus/hour per 1 hp, and you get 109.4 Btus per hour of heat generated as a result of using the long-radius fitting.

Using the same 20 fittings in the first example, you wind up with just 0.86 of wasted horsepower, generating 2,188 Btus per hour of heat.

The cost in dollars

How much is that costing you per year in dollars? As a general rule, at 440 V, a three-phase motor draws 1.25 amp per horsepower. For this example, let's assume our power factor (pf) is 1.0 and our plant is in Florida, where the average commercial electricity rate is $9.66/kWh.

With the standard 90-degree fitting, you're wasting 6.4 hp multiplied by 1.25 amps per horsepower for a 440 V electric motor, or 8 amps. At more than 8,760 hours of operation per year, you'd wind up with 53,345 kWh per year. And at $0.0966/kWh, that comes to $5,153.11/year per fitting.

With the long-radius 90-degree fitting, you're wasting 1.07 amps. Over the same 8,760 hours of operation, that's 7095.95 kWh/year, or just $685.43/year per fitting.

When trying to identify the heat source in a total hydraulic system, your new best friend will be an infrared thermal imaging camera.

Obviously, there are many other things that cause heat in a hydraulic system, such as:

  • Improperly set relief valves when used in conjunction with a variable volume pressure-compensated pump
  • Internal leaks around spools and piston seals
  • Mechanical binds causing elevated operating pressure to force the relief valve to crack open.

However, if you understand that heat is a byproduct that is unnecessary and can be eliminated in the design phase, you will be miles ahead.

Paul Craven, CFPHS, manages one of Motion Industries' repair shops. He is a fluid power specialist and is certified by the International Fluid Power Society as a fluid power hydraulic specialist. For more information, go to www.motionindustries.com.

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
October 2018
Complex upgrades for system integrators; Process control safety and compliance
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me