Weigh the benefits of on-site nitrogen generation

Many facilities are turning to on-site nitrogen generation as a more effective problem-solver that helps operations run efficiently.

03/07/2011


Nitrogen gas is a critical component in a number of industrial markets, and innovative engineers are continuing to find new problem-solving applications in today’s manufacturing facilities. With greater emphasis on cost-effective, low-impact business practices, many facilities are turning to on-site nitrogen generation as a more effective problem-solver that helps operations run efficiently

Cost savings

Quite simply, manufacturers can realize savings somewhere in the range of 40% to 80% when shifting to on-site nitrogen generation, depending on current liquid nitrogen market prices. Prices for delivered liquid nitrogen in the industrial marketplace can range from $0.35 per hundred cubic feet to $1.50 per hundred cubic feet. In cylinders, the price can jump as high as $3 per hundred cubic feet. Shifting to use of an on-site nitrogen generation can initially drop costs to around $0.21 per hundred cubic feet. And that’s just the beginning.

In some scenarios, even after considering the capital costs associated with onsite nitrogen generation (costs such as generators, air compressors, receivers, site preparation, power and maintenance), customers can realize a return on investment in as few as two years. In each subsequent year, regular operational expenses can drop even further to about $0.11 per hundred cubic feet – just maintenance and energy costs. These savings do not include supplementary costs from nitrogen suppliers, which vary by region.

On-site nitrogen equipment providers such as Atlas Copco work with manufacturers to develop a spreadsheet to help them identify the savings that are waiting with a shift from delivered liquid nitrogen to on-site generation in a variety of industries. A set number of variables – liquid nitrogen costs per hundred cubic feet, tank rental fees, delivery charges, hazmat charges and numerous other miscellaneous costs are regular sights on delivery invoices.

Delivery of liquid nitrogen requires that the nitrogen gas be converted to liquid nitrogen for truck transport, and converted back to nitrogen gas onsite upon arrival. Product loss from these two filling points – nitrogen facility to truck and truck to manufacturing facility – contributes to exponential product waste, with additional charges for delivery costs on top of that.

Delivered nitrogen must also be stored onsite prior to use. In a cooled tank, customers who have nitrogen delivered to their facility will lose an automatic 10% of the delivery volume to waste. Furthermore, a tank with a good vacuum will lose a minimum of .4% of the volume each day if internal pressures are allowed to build when product off the top of the tank is not immediately used. Purging pressure to alleviate this pressure contributes additional unnecessary waste as well. It’s a no-win situation.

Environmentally beneficial

Tagging manufacturing practices and processes as “green” has become commonplace and many consumers now look beyond this trite term. Some organizations even deemed it one of the most overused words in 2008. Today, customers look for hard, measurable facts in order to determine for themselves whether a product’s environmental benefits truly stand on their own.

Making liquid nitrogen requires a great deal of electric energy, as the liquefaction point of nitrogen is below -320 degrees F. We’ve all seen videos of what happens when a rose is dipped in liquid nitrogen and dropped on the floor.

As visual a clue as that is, 80% of uses for nitrogen are as a gas and not a liquid. The only reason it is liquefied is for ease of transportation, which, as indicated above, contributes to loss on two fronts. Couple the use of diesel fuel and carbon emissions associated with truck delivery and there are easily identifiable and jargon-free environmental benefits to on-site generation. On-site nitrogen generation also reduces potential for worker injury associated with storage tank leaks and possible exposure to the -320 degree Fahrenheit liquid nitrogen. Serious burns from exposure to skin are dangerous and very possible.

Industry usage

Nitrogen gas is essential in a wide variety of manufacturing industries and environments. Food manufacturing facilities, utilities, such as oil, gas and other power generation facilities, electronics, chemical and pharmaceutical operations each rely on nitrogen gas for a number of applications.

In some industries, in remote or hard-to-reach locations where vehicular delivery is completely unfeasible, like offshore drilling and mining, having membrane or PSA supply nitrogen applications on-site is standard procedure. On-site nitrogen generation can also help achieve optimal purity levels; in industries with particularly sensitive or delicate applications like pharmaceutical, electronics and chemical manufacturing fields, where nitrogen purity is a gold standard, on-site nitrogen generation can better meet these requirements.

With minimal to no training, manufacturers in a number of industries can optimize performance while lowering costs and their facility’s carbon footprint with a simple shift from delivery to on-site nitrogen generation. Email for a copy, with the subject: Manual - Plant Engineering, of Atlas Copco's 136-page Compressed Air Manual 7th Edition.



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
Choosing an automation controller, Lean manufacturing
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me