Washdown gear reducer choice can improve uptime

Choosing a gear reducer that offers performance and can withstand the harsh chemicals and high-pressure washdown required in a food or beverage plant can be a real challenge.

04/25/2012


No plant can afford to have processing lines shut down when inspectors find corrosion or other damage that can result from the cleaning process.

Understanding the advanced features now available in washdown-capable gear reducers will help you select the most durable product.

Housing materials

Most washdown gear products are offered with either a cast iron housing covered with an anti-corrosion coating, or stainless steel housing. Although aluminum is thought to be a noncorroding material, when sprayed with harsh chemicals, the aluminum will quickly corrode and fail.

Overall, a coated cast iron housing is the most cost-effective housing option. The cast iron housing is typically the same as used in the standard product line so costs are low due to high volumes. However, the type of anticorrosion coating, and how it is applied, makes a large difference in product performance at the customer’s site.

Gears are subjected to a salt-fog bath as part of the testing process.It’s critical you choose a washdown product from a manufacturer that uses a salt-fog chamber to run corrosion tests. The salt-fog chamber is the most consistent method available to compare the performance of different coatings under the same highly corrosive conditions. Trying new coatings at customer sites may lead to a coating that works well under some conditions, but not in others.

The highest performance coating system currently available consists of two coats of epoxy-based paint applied to the cast iron housing. Epoxy paint has superior adhesion, is highly durable, and offers very high corrosion protection to the base material. Although powder-coated products have an attractive high gloss, salt-fog testing has shown that powder coating does not provide the same level of corrosion protection as the two-part epoxy paint system. Some gear reducers include a clear third layer, but it primarily functions to add gloss for visual enhancement.

For optimal corrosion resistance, look for products that use electrodeposition to apply the first coat of epoxy paint to the bare housing. In the electrodeposition process, a multistep cleaning process is used first to ensure that all foreign material is completely removed from the surfaces being coated.

After cleaning, the part is submerged into a large container of epoxy paint. An electric charge is then applied, which attracts the paint particles into the smallest crevices of the part’s surfaces. The part is then baked to quickly and fully cure the paint. The resulting paint film is very uniform in thickness, extremely durable, and superior to a primer that is applied via a spray system.

After the gear reducer is assembled, it is then completely covered in another layer of two-part epoxy paint that increases the overall paint film thickness to improve the corrosion resistance. A cast iron housing that has been coated with two layers of epoxy paint, with the primer applied using the electrodeposition process, has a better chance of withstanding the harsh cleaning processes required in the food industry.

However, stainless steel housings provide the ultimate in water and chemical resistance. Since no coating is applied to the housing, the coating cannot be chipped off or inadvertently damaged through the use of very high-pressure water. The downside to the stainless housings is the high cost. Despite the cost, stainless housings should be selected when damage to the paint film cannot be tolerated in a particular food production process.

Venting

Whether the housing is cast iron with epoxy coatings or stainless steel, look for a pressure‑relief type of vent if the reducer is vented. A standard open vent, even if equipped with chemicals to absorb moisture, will ultimately allow moisture to enter the reducer, resulting in premature failure.

A gasket or O-ring should also be present between the gear reducer and motor to keep water and moisture out of the cavity between the two products.

Lubrication

To properly lubricate the gear reducer and avoid contaminating food product, lubricants should have NSF H1 (incidental contact) rating. Reducers using NSF H2 (no contact) lubricant offer no advantage and should not be considered an approved product for incidental food contact. 

Sealing

One of the lowest cost components of a gear reducer, which nevertheless serves a critical function, is the shaft seal. Shaft seals in non-washdown gear reducers seal the lubricant in the reducer and keep dirt and other solid contaminants out. In a washdown application, the shaft seal must still keep the lubricant in the reducer, but it must also keep out water and chemicals being used to clean the exterior of the reducer. If the seal allows water into the reducer, the internal components will rust and the lubricant will break down. Ultimately, the gear reducer will prematurely fail from a combination of these two conditions.

The importance of the right gear reducer in a food processing plant can be seen in the gear’s proximity to a chocolate chip cookie batch.A standard lip seal used in a non-washdown application typically has a rubber sealing lip that rides on the rotating shaft surface. There may also be a noncontacting dirt excluder lip that is used to keep large particles away from the sealing lip. The sealing lip is commonly held against the shaft with a small spring around the circumference of the lip. When exposed to high velocity, or high-pressure water and chemicals, the sealing lip will lift off the shaft and allow water and chemicals into the reducer. Even if multiple standard lip seals are stacked side by side, the sealing lips will lift off the shaft and allow water and chemicals to get inside the reducer.

To avoid these issues, look for enhanced shaft sealing systems that consist of specialty seals designed to keep the water and chemicals out. Commonly referred to as harsh duty seals, the seal construction is modified to provide a positive method for keeping the water spray from the sealing lip.

A harsh duty seal consists of two parts: the normal outer case with sealing lip and a separate inner sleeve and flange. The inner sleeve has a rubber coating to seal tightly against the shaft, and an external flange to keep water from getting to the oil sealing lip. Between the flange OD and the oil sealing lip, there are multiple other lips designed to keep water and other contaminants away from the oil sealing lip.

Some gear reducers come with a rubber v‑ring combined with a standard lip seal to cut costs. This combined sealing system does not typically provide the same level of protection as a true harsh duty seal.

Working in combination with harsh duty seals are corrosion-resistant output shafts. Look for output shafts that are either stainless steel or carbon steel plated, with a high-performance coating such as nickel plating. Both types perform well in washdown applications. Sealing out water and chemicals is vital to the life of the gear reducer.

The type of housing, venting, lubrication, and shaft seal are all critical components of a washdown capable gear reducer, and these features should be carefully evaluated before selecting a gear reducer for a food industry application. 

Russell is Baldor's senior principal engineer for Dodge gearing. 



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me