VFD trends and solutions for drive systems

Harmonics mitigation, filtering voltage spikes are two key issues.

06/04/2015


The increase in variable frequency drive (VFD) installations across the globe has meant that drives are being applied in more challenging system environments.Not only is the environment challenging, but drives also have a few inherited issues that can limit the overall system performance.

International standards have helped guide system integrators to make the correct choices for equipment inside their systems. These choices help to eliminate problems such as electromechanical interference and harmonic noise at the input of the drive; as well as voltage spikes and short-circuit and interference currents at the output. Each of these issues should be taken into consideration during the design phase to increase overall system efficiency during operation.

When many electrical systems are installed in the same area, the equipment in the network begins to interfere with each other. This is often referred to as electromechanical interference, or EMI. This can lead to many problems within the network, including eventual equipment damage. These are risks that many applications such as datasystems, hospitals, and schools cannot afford.

Many integrators are turning to the simplest and cheapest solution, an EMI filter. These filters have a small footprint and are easy to install. They are installed on the line side of the drive system to help suppress the unwanted high frequencies associated with crowded networks. International standards such as International Electrotechnical Commission (IEC) 61000-6-4 have set guidelines for the acceptable levels of EMI in industrial systems. Integrators need to be aware of these guidelines and select components appropriately.

The problem of harmonics

A chart comparing harmonics. All images courtesy: REO-USAHarmonics are present in every drives application. Harmonics are created by nonlinear loads like VFDs. The non sinusoidal currents present in all drives using diodes or switching devices on the input may lead to harmonic currents in the system. Harmonic currents can cause a number of issues in systems such as component overheating, reduced power factor, and equipment malfunction.

There are several different component solutions that system integrators use to mitigate harmonic current content in today’s installations. One of the most common methods is a line reactor. As the name implies, line reactors are installed on the line side of the drive system. A simple 3% impedance line reactor can decrease system harmonic current content by more than 30%.

The reactor itself is just a simple inductor with a specific amount of impedance. Adding impedance to any system will help to mitigate harmonics in every situation. International standards such as the IEEE 519 and IEC 610003-2 should be referenced before installing any industrial or commercial VFD system. The simple addition of a line reactor will improve the overall system efficiency, decrease component maintenance cost, and increase the system equipment lifetime.

The output of VFDs sometimes causes issues that can lead to increased motor stress and increases in system downtime. A common problem at the output is voltage spikes. The switching devices inside the drive turn on and off very quickly, causing resultant voltage spikes greater than the rated voltage of the motor.

Depending on the cable length between the drive and motor, the peak voltage can often be greater than 1,200 V in a 480V system. The longer the cable length, the higher the voltage spikes. These spikes will eventually cause deterioration of the motor insulation and motor winding failures. Certain applications require long cable lengths due to the environment of the system installation.

Filtering voltage spikes

The formula dV/dt represents the instantaneous rate of voltage change. System integrators are turning to dV/dt filters to help mitigate voltage spikes in their VFD systems. These filters are installed at the output of the VFD, in front of the motor in the system. The dV/dt filters suppress the voltage spikes to limits that the motor can better manage. The increased motor protection will lead to an increase in overall motor lifetime, and a decrease in equipment downtime caused by the damage from the voltage spikes.

Like the line reactor and EMI filters on the line side, dV/dt filters are simple to install and are inexpensive, especially when compared to the cost of replacing damaged motors. Most commonly, these filters are used in applications with harsher environments such as oil and gas, mining, and marine.

Another common problem found at the output of the VFD system is the presence of differential-mode and common-mode currents. These are distortions in the output current of the VFD, often referred to as asymmetric and symmetric, respectively. Like voltage spikes, the current distortions exist because of the fast switching devices in the VFD. Current distortion has a negative effect on the motor, causing audible noise, higher losses in heat, as well as overheating when it is ignored.


<< First < Previous Page 1 Page 2 Next > Last >>

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
Choosing an automation controller, Lean manufacturing
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me