Understanding PID loop dynamics

When you watch your PID controller trying to move a process variable, do you understand the interaction of the three factors at each point on the curve?

01/29/2010

 What's happening at each point on the curve?

You're sitting at your console in the control room, watching the graphic representation of a specific process variable controlled by a PID controller. Let's say it is a stable loop, and reasonably well tuned. That means it is following the setpoint closely enough to keep the process running on an even keel and your boss happy. For whatever reason, you need to make a setpoint change. You key in the new value and tell the control system to execute. The setpoint line on the screen moves to its new position. Then what?

Since your loop is running in automatic, the process variable should begin to move toward the new setpoint. As you watch the variable respond, do you ever stop to think about what's going on in the controller? What is actually causing the line to move? Which factor, or combination of factors, (proportional, integral, or derivative) is acting on the actuator at any given moment? Your ability to analyze the action at this level will help you determine what might be going wrong with your loops that do not perform as well.

Look at the diagram of a response to a set point change. What's happening at various points in the movement? For example, at point A , P is pushing hard since the variable is a long distance from the setpoint. I is beginning to push as well, but still isn't strong because little time has elapsed since the change occurred. D, assuming you're using it, is beginning to notice that the slope of the curve has taken a sudden turn and may be trying to counteract the P and I action.

With that in mind, ask yourself what's happening at point B ? Which factor is pushing hardest as the variable nears the setpoint? What makes the curve turn around at C ? How about D and E ?

Let's go a step farther. What if this response isn't suitable for your process? What might be causing the sizable amount of overshoot at point C ? If you were to deal with such a situation in real life, how might you reduce that so the variable would approach the setpoint but no go so far over? Should you change your P value? Should you change the I value?

Obviously this is only a "thought experiment," but the process of puzzling through the various possibilities can help expand your knowledge. To help get you started, here are three resources by Vance VanDoren available from our archive that will help explain how these elements work together and strengthen your understanding:

-Peter Welander, process industries editor, PWelander@cfemedia.com

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.