Two things engineers consistently get wrong

There are two concepts that consistently show up as weak areas with engineers in manufacturing environments. The first is true in-depth "root causes" problem solving and the second is relying on technical solutions rather than culture change to solve problems.

10/17/2014


As I think back over the years of site assessments, reliability implementation, and coaching of facilities and engineers globally there are two There are two concepts that consistently show up as weak areas with engineers in manufacturing environments. The first is true in-depth concepts that consistently show up as weak areas with engineers in manufacturing environments. The first is true in-depth "root causes" problem solving (this is different than the "engineers jumping to conclusions process" that many employ) and the second is relying on technical solutions rather than culture change to solve problems. They both go hand in hand but are only completed at a precursory level by many.

Let's first look at "root causes" problem solving. I have put the quotation marks around it to say that I don't believe that all problems need to be addressed at lowest root causes levels but the problem should be understood to that level so that the engineer truly comprehends the systemic and latent roots or drivers of the problem. These base roots many time rest in the culture of the facility and must be known to truly lower risk of reoccurrence. Secondly there is never just one root cause as there are multiple things that must have existed and instantaneously happen to allow unwanted events to occur hence the "s" on causes. This is why five why and fish bones, which are great for creating a culture of problem solving, are not the tools of serious engineering problem solving. You need to be able to see all of the causal factors that came together to create the event and determine all the possible ways the problem could be addressed to insure a solution is selected that lowers the risk of re-occurrence, creates the best business case, and is sustainable in the long term. Many times engineers go after technical solutions like redesign when the best business case is in changing the culture or behaviors that led to the event.

This brings us to the cultural change piece that is so often ignored as an option. We as engineers are trained to think about technical solutions and therefore many times ignore the people or cultural solutions. Some examples of these technical solutions are replacing a lubricated bearing with a sealed bearing to prevent lubrication based failures or changing adjustable components to fixed designs to prevent operator set up issues. These may be good solutions at the micro level but when the problem is macro and you have 100s of assets and components with these issues and the cost to implement can increase significantly. In these cases educating the work force on lubrication practices and set up requirements, and the included systems and processes can be lower total cost solutions. Behavior change is hard and can take much time and focus but the quantity of defects that can be eliminated or prevented is extensive. So as an example if a bearing failed due to over lubrication and we replace it with a sealed bearing and remove the fitting, a very technical solution, we have eliminated that one failure point but if we tackle lubrication and the cultural issue of precision maintenance as a whole we can correct lubrication issues more broadly and solve many thousands of over lubrication issues across the facility. We can still bring in technical solutions like UE Systems Grease Caddy to help ease the cultural change process but now we are focusing on causes that lie lower in the casual chain and more greatly reducing risk to the facility as a whole.

So in conclusion, if you are thinking about your personal development plan or that of your engineers you may want to consider developing a strong problem solving methodology that looks both deep into the problem and broadly into the contributing factors. It should have business case thinking weaved through out. It also needs a solid process for execution and follow up. It does not have to be complicated but you will need to provide the training required and ensure that your engineers can execute. And, they must consider the behavior or cultural change solutions with the technical solutions to the problems your facility faces. This will have substantial returns on your effort if you stay the course. Reach out to me if you want to hear the success stories others are having in this area.

This content is originally from ReliabilityNow.com, Edited by Anisa Samarxhiu, Digital Project Manager, CFE Media, asamarxhiu(a)cfemedia.com



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me