Tricks of the Trade: Level Control

Sometimes the most important control objective of a level controller is not to control the level.

07/17/2012


Level controlI often say, “Levels are devils to control.” Why? They’re integrating variables; that is, if the level in a vessel is constant, and the valve is opened or closed and then brought back to its original opening, the level will be at a different place in the vessel. Levels are non-self-regulating – they represent an imbalance between the flow of material into and out of a vessel. The tuning challenge is to find the best combination of gain (or proportional band) and integral time (or reset) that attempts to react to material flow imbalances and maintain the level reasonably close to a set point. For a variety of reasons, using derivative is not a good idea for level control. Gain alone or PI control handles PV trajectory changes quite well.



The first question I ask when tuning a level is how important is it that the level be held close to set point? The answer in almost all cases is, “Not very.” After all, what is the vessel for? Normally it’s to hold an inventory of material for downstream processing, so a major portion of the entire volume of the vessel should be available for this use. In addition, the level measuring field device will normally be designed to measure the level well below or above either the bottom or top of the vessel vertical side, depending upon whether the safety objective is to prevent emptying or overfilling the vessel.



The importance of keeping the level close to set point determines how much gain should be used. For a properly designed level control loop, the control valve will fill or empty the vessel at full design flow rates with the valve wide open. If the level is at 50% of capacity and the flow is at 50% of the maximum design rate (and the valve is 50% open), and then the flow increases to 75% of design rate, a gain of 1.0 will open the valve to 75% when the level goes to 75%. So a gain of 1.0 should be the starting point. If it’s really important to keep the level close to set point, use a gain greater than 1.0; less important, less that 1.0. I typically start at 0.5 for most LCs.



Now for the integral time. How important is getting the level back to set point when a disturbance occurs? The answer again in almost all cases should be, “Not very.” Why? Well, think about it. The vessel is being used for inventory between some upstream process and some downstream process. A change in level represents an imbalance between the two processes. How fast do we want the change to propagate from one process to the other? The answer should be: only as fast as it has to be – give the process being asked to accept the imbalance as much time as possible to adjust to the new flow rate.



I typically start with 20 to 30 minutes of integral time. This produces mild reset action with a gradual return to set point with little or no overshoot after a step-type flow disturbance. As an example, in an olefins plant, there are several distillation columns in series. The first column in the series is the demethanizer, which is fed from the cold box, which is ultimately fed from the cracking furnaces. The demethanizer feeds the deethanizer, then the ethylene splitter and the depropanizer, and finally the propylene splitter. These are all super-fractionators with many trays. Small feed rate changes introduce significant disturbances to the column energy and material balances. The major disturbance variable is a change in the rate of cracked gas from the cracking furnaces, due to a furnace being taken down for de-coking or a planned feed rate change.


The optimum tuning constants for the level controllers on all these columns is a combination of gains in the range of 0.2-0.3 and integral times around 45 minutes. This tuning maintains the column levels within ±20% of set point, and returns the level to within 5% of set point within 2-3 hours of the change in column charge rate. But, most importantly, the resulting propagation of the load change to each column is slow enough such that the main product streams (high-purity ethylene off the top of the ethylene splitter and high-purity propylene off the top of the propylene splitter) remain on-spec.



One important thing to take away: the most important control objective of a level controller is often not to control the level!



This post was written by Dr. Jim Ford. Jim is a process control consultant at MAVERICK Technologies, a leading system integrator providing industrial automation, operational support and control systems engineering services in the manufacturing and process industries. MAVERICK delivers expertise and consulting in a wide variety of areas including industrial automation controls, distributed control systems, manufacturing execution systems, operational strategy, and business process optimization. The company provides a full range of automation and controls services – ranging from PID controller tuning and HMI programming to serving as a main automation contractor. Additionally MAVERICK offers industrial and technical staffing services, placing on-site automation, instrumentation and controls engineers. 



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me