Thermal modeling protects motors without overtripping

04/01/2009


Today’s modern microprocessor-based protection relays offer much more than the standard motor protection provided by electromechanical relays. Advanced features include motor-heating, time-to-trip and countdown-to-restart calculations %%MDASSML%% plus real-time diagnostics.

Even with the calculating power of microprocessor-based protection, most relays today still attempt to provide motor protection just by measuring current. The various manufacturers’ models calculate motor heating by thermal capacity or thermal register, where 0% is completely cooled and 100% is the trip threshold.

This thermal capacity is accumulated based on the measured current such that during motor starting, protection is essentially a function of the current squared multiplied by time (an I2t element), with maximum starting time dictated by the hot motor safe-stall time.

Limits of accuracy

While this type of protection dates back to electromechanical relays, the I2t model does not result in the most accurate motor protection, and limits true available horsepower. Thermal time constants and changing motor resistance are critical to proper protection.

Without proper compensation for these motor attributes, the overcurrent model overestimates motor heat, which causes it to trip prematurely. This is especially evident in cyclic overload conditions and in slow-starting, high-inertia load applications.

Cyclic overloads cause a motor to run for some time over the rated load and then for another period at less than the rated load. If the total heat buildup during the overload condition is less than the heat dissipated during the underloaded condition, then the motor thermal capacity is not exceeded. A true thermal model will calculate the heating and cooling time constants and properly apply them to the cyclic overloading condition.

An overcurrent-based protection scheme will overtrip the motor because the model overestimates heat buildup. Adjusting the cooling rate does not solve the problem because it is only correct for one known overcurrent and cyclic period. True thermal-based protection accurately models motor heat and provides accurate, proper protection.

Loading problems

Problems with the I2t model also arise when starting motors with high-inertia loads, as the time required to start the motor may approach %%MDASSML%% or even exceed %%MDASSML%% the hot safe-stall time. Highly accurate thermal-based protection includes a model that calculates motor slip (speed) during the start.

The relay calculates slip based on measured current, voltage and known full-load slip and locked-rotor torque (rated torque) from the nameplate. The relay uses the calculated slip to compute the positive- and negative-sequence rotor resistance throughout the motor start.

Motor resistance changes during starting by a factor of three or more. Without compensating for the resistance reduction during starting, an I2t scheme will trip before true thermal limits are reached, thereby restricting available horsepower during the start. Relays using a thermal model with a slip-based algorithm can automatically calculate maximum safe start times for each unique start sequence. Calculation of rotor resistance allows the relay to accurately reflect motor heating during a start and results in longer allowable acceleration times before tripping.

Motor protection can be greatly enhanced today with microprocessor-based relays with true thermal models that account for dynamic motor attributes. Relays that calculate thermal time constants and apply a thermal-based protection scheme can properly protect a motor during cyclic overloads without overtripping.

The slip-dependent thermal model protects the motor and allows for long acceleration times better than traditional I2t elements and electromechanical relays. Accurate calculation and tracking of motor heat by modern relays are valuable tools for improving motor protection and providing wider operating margins.

True thermal modeling provides motor protection even under cyclic loading from equipment such as this blower for an aerated holding tank at the Moscow, ID wastewater treatment plant.

Accurate thermal modeling provides protection that maximizes motor availability while providing excellent protection from damage.


Author Information
Mark Zeller is director of corporate marketing at




Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me