The New Age of Ventilated Dry-Type Transformers

In this "Cut the Copper" blog, manufacturers use air as a transformer coolant after their attempts to replace Askarel fluids met with little to no success.

04/27/2012


After enduring all of the pain and tremendous costs associated with replacing, rehabilitating, retro-filling and remediating nasty liquid-filled transformers, the electrical industry finally said, more or less in unison, “That’s enough! I’m not going to go through this anguish one more time! No more liquid transformers in my plants ever again. The EPA will never outlaw AIR as a transformer coolant, so from now on, my indoor transformers will be air-cooled.”

 

Manufacturers like GE and Westinghouse, again, led the charge and developed new dry-type substation transformer designs. The electrical industry adopted these quickly, and dozens of other smaller manufacturers entered the transformer business with new ventilated dry-type transformer designs.

 

Dry-type secondary substation transformers. Courtesy: ABB - T&DIn general, the new dry-types worked well in service, although early adopters immediately complained about how loudly they operated compared to the liquid units they replaced, and how much heat they generated when loaded. The most prevalent early designs used 220 C winding insulation and an allowable winding temperature rise of 150 C over a 40 C ambient. That says that the windings themselves could be operating in completely normal service at temperatures nearly twice the boiling point of water, so it’s no wonder that they felt “warm” (can you spell “i2R winding losses”?)

 

Later, next generation improvements included things like Vacuum-Pressure Impregnation (VPI) process, that greatly improved uniform quality of the insulation systems, and then lower temperature rise construction (115 C and 80 C ratings), that greatly improved efficiency and also extended useful operating life. 

 

In general, life was good, again, with many tens of thousands of dry-type transformer installations now in service.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me