Solid-state circuits still create a buzz

In the beginning, there were tubes, in which a stream of electrons flowing through the near-vacuum space inside was controlled by voltage charges on metal plates and grids. Then there were solid state circuits. Many of us grew up with those buzz-words heralding anything that was purportedly "state of the art.


In the beginning, there were tubes, in which a stream of electrons flowing through the near-vacuum space inside was controlled by voltage charges on metal plates and grids.

Then there were solid state circuits. Many of us grew up with those buzz-words heralding anything that was purportedly "state of the art." Solid state devices such as transistors control electrons as they flow through solid materials. A diode is perhaps the simplest solid state device, but even the most complex large-scale integrated circuits operate on the same principles.

You can make a radio by rectifying the radio frequency signal from a broadcasting station. Rectification is the conversion of ac to dc. In the case of a rapidly varying RF signal, a rectifier strips off the high frequency ac to leave a pulsating dc, which is varying at an audio frequency rate.

Actually, one of the first rectifiers was solid state; it was made out of a lead-sulfide crystal and a very thin wire called a "cat's whisker." The crystal was not a good conductor, nor was it an insulator. It was somewhere in between — a "semiconductor." The point of the whisker was moved around the crystal until a junction was formed.

I actually built a "crystal" radio in my youth from a double edged razor blade and, believe it or not, a bent safety pin. With the point of the pin resting on the anodized part of the blade, the signal was rectified and could actually power sensitive earphones if you were close to the station.

Today's solid state diodes work the same way. They are formed by joining two similar, yet different semiconducting materials (Fig. 1). One material is termed the "N" type; the other the "P" type. The N-type material has a negative charge because its material has an excess of electrons. It is also relatively large — like the crystal or even my razor blade. The substrate in most semiconductors is silicon. However, some high priced, high performance and high frequency semiconductors use gallium arsenide as a substrate. Makers of silicon-based semiconductors use arsenic and phosphorous as dopants to make N-type materials. They use boron as a dopant to make P-type materials.

Current flows in the N-type material in much the same way it flows in a wire, the excess electrons simply move through the material. The P-type material has a positive charge because it has "missing" electrons. It is relatively small — like the cat's whisker or my safety pin. The missing electrons form what some call "holes." Current flows when electrons jump from hole to hole. This is sometimes said that the holes flow the opposite direction from the electrons, which is a difficult concept to grasp. However to simplify it, this is similar to a line of cars in a traffic jam. As each car moves forward, the next car moves up to fill the space left behind. An outside observer might say the spaces are moving backwards, but it's really cars moving forwards. The holes are merely the mechanism by which electrons can move in a P-type material.

Forming the PN junction

When the P-type material and the N-type material are joined together, a PN junction is formed. In the N-type material, only the electrons that are close enough to the junction with the P-type material to be attracted by the positive charge are able to cross over the junction and form what is called "barrier region." The rest of the excess electrons in the N-type material stay where they are, producing a net negative charge.

If we apply a negative voltage to the P-type material, the additional negative charge increases the size of the barrier region and makes it even more difficult to move electrons across the junction (Fig. 2). The impedance is very high and therefore does not allow significant current to flow. This is called a "reverse bias voltage."

Applying a positive voltage to the P-type material, however, attracts more electrons across the junction and allows current to flow in the external circuit. The diode formed by the PN junction is now what is called "forward biased," and has very low impedance (Fig. 3). The ratio between reverse biased impedance and forward biased impedance is at least 10:1 and can be many times higher.

A transistor has two of these PN junctions in series. The center material is very thin, and forms a barrier between the outer two materials. A transistor is made up of an Emitter that emits electrons (or holes), a Base that controls the flow and a Collector that collects the electrons or holes. An NPN transistor has an Emitter and a Collector made of N-type material (Fig. 4). Again, the N-type Emitter material has an excess of free electrons. The P-type material controls the flow of electrons from the Emitter to the Collector.

Just as it does in a diode, when the Emitter-to-Base junction is forward biased, current flows from the Emitter, across the junction to the Base (Fig. 5). With no connection to the Collector, a small amount of Base-to-Collector current flows, just as in a diode.

If the Base-Collector junction has a large reverse bias (high positive voltage on the Collector), the electrons that had migrated across the junction are attracted back to the Collector, and the electrons that crossed into the Base from the Emitter see the high positive voltage on the Collector and are also attracted to it. A small current still flows in the Emitter-Base circuit, but a much larger current flows in the Collector circuit (Fig. 6). The small Emitter-Base bias "controls" a much larger Emitter-Collector current, thus providing amplification of the signal. The Emitter current is the sum of the small Base current and the larger Collector current. The Collector is made physically larger to accommodate the heat generated by the large current and to provide a large target for the free electrons in the Base.

Reversing polarities

A PNP transistor is essentially the same thing with the polarities reversed. Just as in the previously discussed NPN transistor, a relatively small forward bias on the Emitter-Collector junction controls a larger current through the reverse biased Base-Collector junction. The convention is to describe the current carriers in an NPN transistor as the electrons, while the current carriers in a PNP transistor as the holes. Remembering, however, that the holes are merely spaces where an electron is missing and "hole flow" is in reality just electrons jumping from one hole to another, you can see that the mechanism is essentially the same in both types.

In this article, we have described simple diodes and transistors. However, there are many more variations on both themes. Small changes in mechanical arrangements, bias voltages and materials can make dedicated devices for regulation, impedance matching or high-frequency applications. The same basic theory applies to a small signal device in a cell phone and a high power switch in a variable frequency motor drive.

The Bottom Line...

  • Semiconductors are neither pure conductor nor pure insulator; they are somewhere in between.

  • A semiconductor takes on either an N-type or a P-type characteristic, depending on the material used to dope the substrate.

  • Diodes are formed by joining N and P-type materials.

  • Transistors are formed by sandwiching one type of material between layers of the opposite type.

  • Wendell Rice has 25 years of experience as a controls engineer, and works for Parsons Technical Services. He can be reached at (765) 245-5357 or .

    • Fig. 1. P-type material contains a large concentration of holes with few electrons; N-type material contains a large concentration of electron with few holes. A PN junction is formed when the two are joined. The holes from the P-side diffuse into the N-side, while the electrons from the N-side diffuse into the P-side. A negative space charge forms near the P-side and a positive space charge forms near the N-side of the junction. The net current flow across the junction is zero.

      Fig. 2. When a negative voltage is applied to the P-type material, the junction is reverse-biased. This increases the size of the barrier region, which drives the impedance very high, making it more difficult to move electrons across the depletion zone of the junction.

      Fig. 3.When a positive voltage is applied to the P-type material, the junction is forward-biased. This greatly decreases the size of the barrier region, which drives the impedance very low, and allows significantly more current to flow through the junction.

      Fig.4. A transistor is like a sandwich with the bread being the same type of material and the filling the other type. An NPN transistor has an Emitter and a Collector made of N-type material with a Base made of P-type material.

      Fig. 5. When the Emitter-Base junction is forward biased, there is current flow from the Emitter to the Base. If there is no connection to the Collector, the Base-Collector current is small because that junction is reverse-biased.

      Fig. 6. Placing a large reverse bias on the Base-Collector junction draws the current flow through the transistor. The relatively small Emitter-Base current controls a much larger Emitter-Collector current. When current flows through a load, such as a resistor, connected between the Collector and Emitter of the transistor, a voltage is developed that is an amplified version of what is applied between the base and emitter.

      Jamieson is 2006 IEEE president-elect

      Leah H. Jamieson , Ransburg professor of electrical and computer engineering, and associate dean of engineering for undergraduate education at Purdue University in West Lafayette, IN, has been selected as 2006 IEEE president-elect . Jamieson will begin serving as IEEE president on Jan. 1 2007. She will succeed 2006 IEEE president Michael R. Lightner, professor of electrical and computer engineering at the College of Engineering and applied science at the University of Colorado.

      Jamieson, an IEEE Fellow, is only the second woman in the history of the IEEE to be chosen for the president-elect position. An IEEE member for 30 years, she presently serves on the IEEE Board of Directors and Executive Committee. She is a member of the Strategic Planning Committee, chairs the new Technologies Directions Committee and holds the position of vice president of the Publication Services and Products Board. Among her many other leadership roles, she has served as vice president of the Technical Activities Board and as president of the IEEE Signal Processing Society.

      In addition to her current positions as professor and associate dean at Purdue, Jamieson is co-founder and director of the Engineering Projects in Community Service (EPICS) undergraduate engineering design program, which was initiated at Purdue and has been adopted by 17 universities. For her work with EPICS, she was co-recipient of the U.S. National Academy of Engineering's Gordon Prize for Innovation in Engineering and Technology Education. She has served on advisory committees of the National Science Foundation and on the Board of Directors of the Computing Research Association. She is also a member of the U.S. National Academy of Engineering.

      NEMA revises standard for measuring distribution transformer loss

      NEMA, has published "TP 2-2005, Standard Test Method for Measuring the Energy Consumption of Distribution Transformers." The document provides a standardized method for measurement of distribution transformer loss to achieve energy efficiency levels outlined in NEMA publication "TP 1, Guide for Determining Energy Efficiency for Distribution Transformers."

      "TP 2" was revised to address concerns raised by the Department of Energy with the previous edition. Under the Energy Policy and Conservation Act, DOE was tasked to develop rules to adopt test procedures for measuring the energy efficiency of distribution transformers. These revisions are intended to make TP 2 acceptable to DOE so that it will be adopted as the DOE test procedure.

      This revised standard may be purchased from NEMA

      EPRI technology receives R&D 100 award

      The Electric Power Research Institute (EPRI), three member companies: AmerenUE, Exelon Corp., and South Texas Project Nuclear Operating Co.; and Dominion Engineering, Inc. (DEI) have earned a 2005 R&D 100 Award for ultrasonic cleaning of nuclear fuel, a promising new technology that safely removes deposits from irradiated fuel assemblies in nuclear power plants. The annual awards are given by R&D Magazine for the most outstanding technology developments with commercial potential.

      The technology awarded delivers a patented process for removing corrosion products deposited on irradiated nuclear fuel pins using a unique form of ultrasonic technology. The technology was first applied at their nuclear power plants by the three EPRI member companies noted above, using equipment supplied by DEI.


Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me