Six keys to sustainable manufacturing

Bosch-Rexroth looks at some simple ways to make things greener


The federal government estimates that manufacturing uses about one third of the energy consumed in the U.S. so manufacturing companies can play an important role in building a sustainable future.

The good news is that manufacturing engineers, especially design and manufacturing engineers, are already stepping up to the plate. Every day, engineers design products that conserve energy, reduce waste, and eliminate pollution, and they manufacture those products in a sustainable way.

But there’s more to do. And the present climate of economic and environmental concerns challenges engineers to optimize manufacturing processes and make them more sustainable.

Here are six key steps in making manufacturing more sustainable. The first two are pretty obvious, and many of us are doing a good job with these. But the last several are things design engineers need to be thinking about constantly.


1. Optimize current use of fossil fuels

That’s a given. Cutting energy cost is a win-win situation in today’s environment. There seems to be little argument that we are close to “Peak oil”, when half the known oil reserves in the world have been consumed.le sources of energy - whether it’s wind, solar, or hydroelectric.


2. Eliminate waste

Another no-brainer. Only consume what you need for the final product. Sounds very simple to us today, but I think we all know that, in the past, our primary objective was to reduce cost or time to market. Nobody knew or cared whether we were using more than we needed. This applies to every industry… whether it’s the amount of metal, paper, packaging material, etc. used. Re-evaluate if investing in precision manufacturing equipment can be justified by waste reduction.


3. Reduce, or hopefully eliminate, pollution.

When you walk around a trade show these days, one of the hot topics is how to reduce environmentally unfriendly used in products, as well as byproducts in manufacturing processes. You hear things like renewed interest in dry, or near-dry, machining, using as little coolant as possible while you’re doing metal removal. Or de-burring, taking the burrs off of finished material after you’ve cut it, another process using quite a few powerful chemicals.


4. Recycle.

Look at the amount of metal chips that are made in metal removal processes.are a lot easier to transport and use a lot less energy. Or, even better, a chip management facility in-house that melts chips and processes them into small billets that can be transported to foundries for reuse.


5. Recover energy, don’t turn it into heat!

Hybrid cars recover energy otherwise wasted during braking, did you know machines can do it too? Power sharing has its roots in machine tools, where the servos used in metal cutting machines and seam machines share power through a single power supply. We can actually take power during deceleration and return it to the main lines. In the past, that energy was wasted, turned into heat, like the brakes on a car.

Another great example is in coordinating the cycles of several metal presses. At first you might think, “Have all the presses go up and down together and then move the material.” But we found that if you skew the cycles slightly, you can use the decelerated, regenerative power in one to help accelerate the other one. That has no effect on the process time, no effect on the cycle time and it doesn’t cost more. But it saves energy.

We’ve started to apply our knowledge of shared servo power to other industries like packaging machinery, automation, printing presses.


6. Save time

Just saving time, by itself, is indirectly an energy savings. If you can run a cycle faster without using more energy to do it, you can shut it down and save power. Or if it’s a large-scale high-production facility, you can reduce the number of machines you need to produce the same quantity of material.


The challenge of the future

Those are all challenges engineers are meeting, and they are what will make manufacturing sustainable in the coming years.

At Bosch Rexroth, we’ve got a whole lot of Dilberts in our facilities who just love a good challenge like “How can I make this product consume less energy?” and “How can I make the product with using as few resources as possible?” You can really see it on people’s faces every day.

Unfortunately, when most people hear about sustainability, they think of big ticket items - like solar panels or wind farms. But, though they may not have the glamour or get all the attention, it’s the" workhorse” devices like servo drives, hydraulic pumps, bearing assemblies that will create the sustainable manufacturing of the future. I think we prove that to ourselves and to our customers on a daily basis.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me