Seven steps in predicting equipment lifecycle: Using obsolescence management

A well-managed obsolescence management system safeguards a company from the aforementioned issues. Here are seven steps in using the system to predict equipment lifecycle.


A well-managed obsolescence management system safeguards a company from the aforementioned issues. Here are seven steps in using the system to predict equipment lifecycle. Courtesy: Intech Process AutomationCompanies worldwide receive thousands of product change notifications (PCNs) and end-of-life (EOL) notifications daily. What could be the possible consequences of these notifications? Can we assess the risks involved in a delayed response when handling obsolescence?

Obsolescence can be simply put as the transition from availability from the original manufacturer to unavailability. Immediately after the information about discontinuation has been announced from its Original manufacturer, obsolescence of a product starts. This is usually done by a product discontinuance notice (PDN) or a message about the EOL. Also an announcement for a life-time-buy (LTB) or a PCN could be the start of obsolescence.

Reasons for obsolescence occurrence include market change, technological evolution and environmental policies & restrictions. It is very common that a situation of market change can lead to a decrease in demand for older products such that the economic production is not feasible. Similarly, a newly developed generation of technology renders the old one obsolete and sometimes these new technologies are often cheaper to produce than their predecessors. In some cases, old technologies are completely displaced by new ones. Moreover, government and other interest groups intervene with legal regulations and restrictions. Failure in compliance with environmental policies can lead to product obsolescence.

The financial impacts of obsolete components are quite high for the end-user especially when a redesign is necessary and costs not only incur for engineering services, but also for operating capital or testing equipment. The costs of repeated obsolescence intervention throughout the system’s life largely exceeds the incremental costs associated with an obsolescence management strategy.

Following should be taken into account when designing obsolescence management strategy:

  • All components of every system shall be designed in full accordance with the relevant codes and standards applicable. 
  • The obsolescence management strategy shall be defined and communicated throughout the company.
  • The obsolescence management process shall be subject to regular reviews to make ensure that the strategies and processes remain fully applicable and effective.

To prevent these risks of obsolescence following three management strategies are established:

Reactive obsolescence management

Reactive obsolescence management is the instruction to deal with obsolescent components after receipt of EOL notice. The following solutions are used to mitigate the risk of obsolescence:

  • Reclamation or cannibalization of parts
  • Finding alternate (fit, form and function) replacement from the same or a different manufacturer
  • Finding nearest equivalent substitute part, to reduce the redesign cost
  • Costly ‘last time buys’ (LTB) or ‘Die Banking’. Buying the components in bulk and store them in inventory for future needs.

Proactive obsolescence management

For critical components that have a high risk of going obsolete, proactive management is implemented.

Benefits of using proactive obsolescence management include:

  • Early warning of component discontinuance (end of life) allows maximum time to react and avoids to choose costly resolutions
  • Corrective action options at the component level can be taken while low cost opportunities still exist.
  • Evaluation of end of life notices and part change notifications (PCNs).

Strategic obsolescence management

This is a long-term strategy that considers technology forecasting and long-term business case planning and development.

For proactive obsolescence planning, the aim is to categorize all the parts out of the Bill of Materials (BoM) in a systematic scheme and treat them in different ways. In general, seven steps are required.

Step 1: System support plan assessment

The first step is to identify the period when each component in the BoM is required and how long necessary supply parts should be available.

Step 2: Resource planning

For the second step, the available resources that can be allocated to the project are identified. The items with the highest risk of obsolescence should be supported by most of the available resources.

Step 3: Extract and filter bill of materials

Next, get a BoM with the low risk components filtered to reduce the workload. This complete risk assessment will figure out high and low risk potentials in detail for each component in the mentioned BoM.

Step 4: Risk analysis for each component

Now the risk of each component in the mentioned BoM should be assessed according to the risks of getting obsolete. Therefore is it essential to consider the following two criteria:

  1. Probability that the component becomes obsolete
  2. Impact of the obsolete component on the system.

Step 5: Components prioritization and mitigations decisions

Here it is important to find systematic ways to treat very high, high, medium and low potentials of obsolescence. very high obsolescence risk are those items that should be permanently treated and strategies should be deployed to reduce the risk that obsolescence occurs. For high obsolescence risk items the obsolescence manager has to decide how these items should be treated. In many cases the same treatment as for very high obsolescence risk will be used. For medium obsolescence risk the components a frequent check of parts with medium obsolescence risk seems to be enough. In low obsolescence risk category it is advised to implement a reactive treatment. Reactive treatment is cost effective for this category.

Step 6: Risk register update

All the data which have been collected in correspondence with the appropriate treatments have to be noted down in a risk register. This register must be frequently updated to ensure the best mitigation of obsolescence.

The following information should be provided for each part of the BoM:

  • Status (obsolete or not)
  • Period in which the component should be available
  • Details about the risk level
  • Next planned steps if the part is obsolete.

Step 7: Review

Periodically, the assessment needs to be reviewed and updated if necessary. The obsolescence manager has to decide when this must happen and the corresponding responsibilities have to be assigned.

A well-managed obsolescence management system safeguards a company from the aforementioned issues. Obsolescence is inevitable and hence cannot be avoided, but careful planning can help us reduce its impact. It must be managed as an integral part of design, production and service support in order to minimize the financial and availability impact throughout the product life cycle.

- Ali Awais Amin is a design & application engineer at Intech Process Automation,  a system integrator and automation solution provider for the oil & gas sector globally. Intech Process Automation is a CFE Media content partner. Edited by Joy Chang, digital project manager, CFE Media,

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
November 2018
2018 Product of the Year finalists, mild steel welding: finding the right filler, and new technique joins aluminum to steel.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Summer 2018
Microgrids and universities, Steam traps and energy efficiency, Finding help with energy projects
October 2018
Complex upgrades for system integrators; Process control safety and compliance
November 2018
Analytics quantify processes, Fieldbus networking and IIoT, Choosing the right accelerometer

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me