Self-priming centrifugal pumps: What you need to know

Most maintenance and operations personnel who work with centrifugal pumps have been warned repeatedly that starting a pump dry can scorch and permanently damage the seals or packing, and that pumping won’t begin if the suction liquid is below the pump’s suction lift. Then they encounter a “self-priming” pump and begin to question all those warnings.

12/17/2013


Figure 1: Use of a secondary priming pump. Courtesy: EASAMost maintenance and operations personnel who work with centrifugal pumps have been warned repeatedly that starting a pump dry can scorch and permanently damage the seals or packing, and that pumping won’t begin if the suction liquid is below the pump’s suction lift. Then they encounter a “self-priming” pump and begin to question all those warnings. So, what’s the real scoop on self-priming pumps?

In fact, no centrifugal pump is truly self-priming in suction lift situations. And while there are several ways to start a pump that’s filled with air, the first priority is always to protect the seal from overheating. This is usually accomplished by cooling and lubricating the mechanical seals and packing with a small amount of liquid that migrates between the stationary and rotating parts.

Protecting the seals

A properly primed pump will have the seal vented, ensuring a continuous supply of pumpage or flush liquid to cool and lubricate the seal. Centrifugal pumps classified as “self-priming” usually have double seals with a barrier fluid in the chamber between them. The barrier fluid floods both seals and supplies the necessary cooling and lubrication to protect them from scorching when the pump is started dry. See the “API Seal Plans” (API 683 / ISO 21049) for more information on double seals and barrier fluids, or contact your seal distributor.

Two common approaches

Assuming the seal has adequate cooling and lubrication, the next concern is whether the fluid is above (flooded suction) or below (suction lift) the pump. The problem, of course, is to create sufficient suction to lift the liquid into the pump. But centrifugal pump impellers can’t pump air. By design, they can only develop pressure differentials in pump housings with liquids, which are commonly 800 times denser than air.

Figure 2: An example of a re-priming pump. Courtesy: EASAOf two common solutions to this problem, the most straightforward is to evacuate the air and draw liquid into the pump using an auxiliary pumping device (see Figure 1).

This assumes the suction line is submersed in the liquid, forming an air seal. The discharge must also have an air seal, which is usually provided by using a ball or flapper check valve to prevent air from being drawn into the pump housing from the discharge line. The secondary “air pump” may be a diaphragm, piston or eductor pump, and may be electrically, mechanically or pneumatically driven.

With the pump suction and discharge sealed, the secondary pump will push the air out and draw in the liquid. When the liquid reaches the level of the impeller, the impeller will begin to pump, forcing the discharge check valve open. A pressure switch will then shut down the secondary air pump.

A second solution is to design the pump housing so that it will retain liquid when both the suction and discharge lines are drained. Suction and discharge nozzles may be located well above the impeller, creating a “tank” below that houses the impeller and volute (see Figure 2). A ball or flapper check valve on the suction or discharge may prevent siphoning of the liquid in the tank when the pump is stopped. When the pump is restarted, the fluid in the tank is sufficient to develop suction lift and draw fluid into the pump, tank and impeller, and to purge the air out the discharge. The pump is said to “digest” or pass the air. With this approach a new or rebuilt pump must be primed initially when it is installed. If the pump tank is later drained for any reason, the pump will not begin to pump. Since the self-priming feature of this pump style is only effective after an initial prime, it might be called a re-priming pump.  For pumps of this nature, the user may consider freeze protection or draining during cold months.

Eugene Vogel is a pump and vibration specialist at the Electrical Apparatus Service Association Inc. (EASA).



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me