Selecting Quick-Connect Couplings For Compressed Air Service

Most manufacturing plants using compressed air apply quick-connect couplings. Proper selection and sizing of these inexpensive, ubiquitous devices are usually not given the consideration they deserve.

03/01/1998


Most manufacturing plants using compressed air apply quick-connect couplings. Proper selection and sizing of these inexpensive, ubiquitous devices are usually not given the consideration they deserve. Although not a major maintenance expense, the effect of poorly chosen couplings can create unexpected problems with productivity, energy conservation, and safety.

Couplings for compressed air service are available in several connection configurations and materials of construction. The choice depends on service requirements. Industrial interchange couplings (Mil~-C-4109 & ISO 6150 Series B) are the most common for industrial applications. They are offered in the widest size and configuration selection.

Selection factors

The first decision in the proper selection of a quick-connect coupling is choosing an appropriate style for the application involved. There are four important factors to consider: environment, frequency of use, location, and safety.

Environment

Couplings used outdoors must be resistant to weather. Those made from copper alloys or malleable iron last the longest; plated steel rusts. If the application involves physical abuse or a dirty environment, such as a foundry, the proper choice would be quick couplers with no moving parts, because they are not affected by dirt as much as couplers with movable sleeves.

Frequency of use

How frequently a quick-connect coupling is used has a direct bearing on the type selected. Axial connect couplings are usually valved and can simply be disconnected. A rotary connect coupling has no valving mechanism. When the need for disconnect arises, the air must be shut off at the source.

The most common wear points on valved quick-connect couplings are the valve, springs, and seals. For heavy-duty use, couplings without spring-loaded, poppet-type valves and with O-ring seals instead of flat washers should be considered.

Location

Position or location of the coupling affects the selection process. If the coupling is at the end of a loose hose, most styles will do. When a coupling is located on a pipe or other fixed location, an automatic latch or zero-pressure type is convenient to use, because only one hand is required to operate it. When a coupling is located at the end of an overhead hose drop, a zero-pressure type is best because of the lack of engagement effort and ease of disengagement without hose whip.

Safety

Since air is compressible, release of pressure upon disconnect is accompanied by a rapid expansion of air from the unvalved half of the coupling. This release, similar to the action of a rocket engine, causes the hose, if unrestrained, to flail about with the potential for injury. The larger the air volume contained in the hose, the more violent and sustained the action.

There are two ways to eliminate the problem of hose whip. The downstream coupling half -- the plug -- can be equipped with a ball check valve. When air is released at disconnect, the ball prevents the air from escaping rapidly. A disadvantage of this design is restricted airflow during use.

An alternative is to select a zero-pressure, quick-connect coupling. This design automatically depressurizes the downstream air volume as it shuts off the upstream supply. By the time the coupling is disconnected, there is no residual air pressure remaining to cause hose whip.

Sizing

Quick-connect couplings are sized according to two factors; connection size determined by the hose or pipe fitting to which the coupling is connected, and body size determined by the required airflow.

When using couplings with cleaning or dusting devices, the flow rate is not critical. However, the majority of couplings are used with air tools that require 90 psi at the inlet. Since typical plant compressor output is between 100 and 125 psi, the amount of pressure drop allowed at the coupling is usually quite small.

The following rule-of-thumb, based on 90-psi inlet and 2-psi pressure drop, helps determine coupling body size based on flow requirements. (Refer to the manufacturer's catalog to determine actual pressure drop.)

Pipe size, in. Consumption, scfm

1/4 15

3/8 30

1/2 50

Tips

Minimize the effect of vibration or shock from tools which can deform the plug by impacting the latching balls or pins or elongate ball bodies in sockets. This action can be done by using a 2-ft whip hose between the tool and coupling.

Check couplings periodically for leaks in the coupled and uncoupled position. Compressed air leaks are expensive in terms of energy cost and excessive compressor capacity. Selection of O-ring seals instead of washer seals provides a product that lasts longer and is leak free.

Replace couplings that are not performing properly. Although repairable, their initial cost does warrant the cost of labor to repair.

-- Edited by Joseph L. Foszcz, Senior Editor, 847-390-2699, j.foszcz@cahners.com

More info

The author is available to answer questions regarding the selection of quick connect compressed air couplings. He can be reached at 314-629-3700.

Key concepts

Rotary couplers are better suited to harsh environments than axial types.

Frequently used couplings should have a built-in shutoff valve.

Airflow determines the coupling body size.

Types of couplings

Rotary Axial

Glad hand Ball latch

Universal claw Pin latch

Quick lock Bar latch





Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me