Robots should be doing more than 2 or 3 tasks

If tools aren’t enabling more flexibility in use and expansion of robotics, then we need better tools. That’s what’s behind the ROS-Industrial effort from Southwest Research Institute (SwRI). How does setting up a factory in a day sound?


Robots aren’t adapting to other tasks, as the Robotic Industries Association (RIA) statistics suggest. ROS-Industrial hopes to ease that challenge by standardizing robotic interfaces to promote development of hardware agnostic software that can more easilRobots should be easier to use for more applications, and Southwest Research Institute (SwRI) established ROS-Industrial, an open source industrial robotic software and working group, to broaden the application of robotics and increase robotic interoperability. ROS stands for robotic operating system. A Dec. 5 quarterly community meeting, held online and on the phone, is summarized below, including information about setting up a factory with robotics in one day. The open forum discussed the general direction of the ROS-Industrial program, reviewed new robotic technologies, and publicized the work and the needs of the community. All are invited to these meetings, though developers and end users are the target audience. About 60 people attended.

Shaun Edwards, SwRI senior research engineer, robotics and automation engineering section, said robots should be doing more than two or three tasks, referring to the slide using Robotic Industries Association (RIA) statistics. The ROS-Industrial program goal is to broaden robotics into other applications with standard robotic interfaces and extended capabilities of the Robot Operating System (ROS), he said. Two YouTube videos help explain efforts; see links below. Citing statistics from July, Edwards said contributors to the program include more than 30 developers and bug finders, and for the approximately 100,000 lines of code, 27% are comments, showing that it’s well-documented code.

“What we want is to limit the number of skills needed to program ROS-Industrial.”

A good step in that direction is BRIDE, said Edwards.

BRIDE is a compound, multi-lingual acronym, standing for BRIC (German: best practices in robotics) and IDE (integrated development environment). BRIDE provides a framework for meta-model definition and transformation in the Eclipse platform, using the BRICS component model. At present, it supports Orocos and ROS.

Alexander Bubeck, project manager for industrial engineering in the Fraunhofer IPA robotics group, described BRIDE as a toolchain for model-based software development. Current challenges in software for industrial and service robotics include lack of reuse and need to create more understandable code, promoting wider use of standards and best practices; shorten learning curves; speed releases of the next version; and allow distributed development. ROS did a great job in lowering the learning curve for robotic programming, but adding model-driven engineering would streamline efforts, Bubeck said.

Software engineering for robotics would be better served by creating a model-driven engineering (MDE) component framework with layers, from components at the bottom to model of classes, meta models (currently served by UML, unified modeling language), and above that a meta-meta-model layer (theory). Purpose is to separate concerns such as computation, communication, coordination, and configuration in programming, eventually allowing investments in code to be portable among manufacturers, he suggested. [Example: Some manufacturers offer software libraries, but software components that describe the same functions cannot be reused across platforms and must be rebuilt. Imagine how much more expensive building a house would be if lumber, pipes, wires, windows, and appliances were all engineered with custom specifications for each house.] Error handling will be integrated into the next version, Bubeck added. Learn more about these efforts to help with reuse and modification of robotic code.

Best of Robotics

Other news about related work in progress from those presenting:

Eric Marcil, senior project engineer, Yaskawa America Inc., Motoman Robotic Division, said that his company’s interface to ROS released earlier this year will be updated to include the Motoman dual arm robot, with release expected in the first half of 2015. 

Joe Spanier, automation engineer at Caterpillar Inc., seeks easier point creation in MoveIt!, a ROS application for motion planning. Also useful, Spanier said, would be more ROS drivers, for laser scanners for instance, which would save time by eliminating the need for touch sensing in robotic welding applications.

Jason Michel Lambert, research office, robotics and automation, with Canada’s National Research Council, is working with ROS in relation to hardware in the loop and fast prototyping. He expressed interest in a real-time interface and is working with Kuka and Comau robots to bring ROS closer to plant-floor applications.

Gijs vd Hoorn, researcher, Delft Robotics Institute, Technical University Delft, The Netherlands, said that Delft supports the Fanuc stacks, MoveIt! configurations, and kinematic plug-ins. Future efforts will include improving the Fanuc driver, and expanding support to additional manufacturers and input/output (IO) devices. With joint torque and tool force feedback, supported by some robots, ROS would work with more applications assembly and grinding.  

Florian Weisshardt, Fraunhofer IPA, described the Factory-in-a-Day effort from the European Union, now with more than 18 partners, and more than 8 million Euro budget. The project goal is to develop technologies and business models to reduce factory installation time and related costs from months to one day. Possible timeline follows.

First, analyze workflow, then design custom components for the job, and print 3D components. At 8 a.m. ship everything to the factory. 10 a.m. unload and begin self calibration. 12 p.m. Instruct and teach. 4 p.m. finished.

To lower time, effort, and cost, an integrated tool chain is needed to develop, test, install, and deploy robotic software components. A working prototype is planned for June and a first prototype in October, with an October 2015 target for the final version, Weisshardt said.

Brian O’Neil, a postdoctoral research associate with Los Alamos National Laboratory, seeks to advance automated assembly situations where parts are not fixed ahead of time or when parts are not perfect.

Simon Jansen, representing a team of three at Alten Mechatronics, is working on a graphical user interface to make ROS usable for industrial operators beyond ROS developers, with release expected early in 2014.

Kelsey Hawkins, a robotics PhD student at Georgia Tech, is working on a driver for Universal Robot that would allow the robot to operate using a faster control loop, 125 Hz. ROS provides an interface to manage the new control loop wrapper, without the need to bring down the robot to test the new controllers.

Shaun Edwards, SwRI, said those taking a survey in October have prompted better ROS-Industrial tutorials, documentation, training materials, and code review.

Clay Flanagan, manager of robotics and automation section of SWRI, thanked participants.

- Mark T. Hoske, content manager, CFE Media, Control Engineering,


See this article for more about ROS-Industrial.

ROS-Industrial videos on YouTube:

- What can ROS do?

1 year montage

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me