Replacing incandescent lamps with LEDs

Currently, there is interest in high efficiency, long-life, light emitting diode (LED) lamps for use in factories, institutional, and commercial applications, because the costs of electricity for lighting and labor for bulb replacement are significant. The goal of the LED manufacturers is to build a very high-brightness white LED that is economical and efficient enough to be used for illumination.


Currently, there is interest in high efficiency, long-life, light emitting diode (LED) lamps for use in factories, institutional, and commercial applications, because the costs of electricity for lighting and labor for bulb replacement are significant. The goal of the LED manufacturers is to build a very high-brightness white LED that is economical and efficient enough to be used for illumination. To gain widespread acceptance as a legitimate light source for general lighting, LEDs must be able to economically and reliably deliver illumination levels of white light of a quality within today's acceptable standards.

Theory of operation

An LED is a PN junction semiconductor that emits photons when forward biased. The emission of light occurs when minority carriers recombine with carriers of the opposite type in the band gap of the diode. The wavelength of the emitted light — which determines its color — varies according to the semiconductor material.

LEDs are processed in wafer form similar to silicon integrated circuits, and broken out into dice. The simplest packaged LED is the indicator lamp. Typically, LEDs have a mean time between failures (MTBF) of more than 100,000 hr.

Today's ultrabright LEDs exceed the light output of incandescent and halogen lamps. They don't have the maintenance requirements associated with filament lamps. LEDs can be dimmed using a pulse-width modulation (PWM) circuit, which delivers energy in pulses of varying duty cycle.

History of LEDs

The first reports of a device with properties similar to LEDs dates back to 1906 when Henry Round reported electroluminescence while experimenting with carborundum. However, LEDs didn't become commercially available until the early 1960s. Texas Instruments sold an infrared (IR) device for $130 and GE distributed red LEDs through the Allied Radio catalog for $260. They were expensive and sold in low volumes.

IBM used LEDs as on-off indicator lights on circuit boards in a mainframe computer constructed around 1964, which marks the first time LEDs were used to replace incandescent lamps. LEDs used less power, could be mounted directly on the circuit board, and had a much longer life expectancy, which made using LEDs attractive from a maintenance perspective.

In the mid 1980s, the U.S. military began gradually replacing tungsten filament indicators with LEDs, and they began appearing in elevator cars. As with the IBM application, LEDs were designed into pieces of equipment. They were mounted on printed circuit boards (PCBs), mounted in equipment panels and face plates using specific mounting bezels with wires soldered to their leads, and plugged into sockets made specifically for LEDs.

LED performance made a leap in the early 2000s. Companies started manufacturing flashlights using LEDs instead of the traditional incandescent bulb. As improvements were made in brightness and color, LEDs moved farther into tungsten territory. They appeared in traffic signals, home entertainment, and decorative lighting.

Today, LEDs are used in many industries from automotive to architectural lighting applications. Industrial plants are discovering the benefits of replacing traditional bulbs with LED lamps. For example, hundreds of incandescent lamp part numbers now have direct LED-based replacements. Most LED suppliers have extensive cross-reference literature and databases. Standard lamp bases are available, allowing LED lamps to replace incandescent lamps without having to retrofit equipment.

Flashlights continue to get brighter. Some currently available flashlights suitable for industrial use boast as much as 1800 foot-candles (fc) of white light. LED floodlights, work lights, and luminaires for general-purpose lighting applications are available as well.


LEDs have enjoyed continued success because they use considerably less power and last much longer than tungsten filament incandescent bulbs. LED lamps use only 10% to 20% of the energy consumed by equivalent incandescent lamps. An average LED life span can exceed 100,000 hr — more than 11 yr.

LEDs are solid-state devices, which make them virtually immune to electrical and mechanical shock — unlike incandescent lamps, which have filaments that are very susceptible to electrical and mechanical shock. Electrical shock comes from constant on-off transitions, transients, and surges; mechanical shock comes from bumping, jarring, and other forms of vibration. Also, LEDs produce very little heat, making them an attractive alternative to incandescent lamps in applications where heat is an issue, such as biotechnology, chemical, and food processing.


LEDs had to overcome physical and technological issues to get where they are today. The primary hurdles have been drive current, packaging, color, and price. Although these issues have been addressed, they still exist to some degree. Drive current directly affects LED lamp output and lamp life. LEDs are inherently robust. They are capable of delivering high output at high current, as long as heat is extracted properly.

Packaging issues include thermal management, current handling capability, and color. Advanced device packaging allows adequate heat dissipation and increased current capacity. Packaging also affects color, which is extremely important in applications that require white light. Use of LEDs as illumination sources requires white light with a degree of "warmth." This requirement must be met if LEDs are to make any headway in replacing incandescent lamps for general-purpose illumination. Fluorescent lighting addressed this issue. And it appears that LEDs are rising to meet the challenge as well.

The cost-effectiveness of LEDs depends on the application. Today, the system price is high for replacing conventional incandescent lamps with LED-based technology. However, for established LED applications, such as control panel indicators and annunciator lamps, LEDs are more cost effective. Although the unit price is higher, the lower power consumption and longer lamp life help offset the initial purchase price. Some plants can justify the higher cost of LEDs for this application based on lower maintenance costs alone.

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
October 2018
Complex upgrades for system integrators; Process control safety and compliance
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me