Regenerative power units save energy

Spindle drives, decanter centrifuges, hoists, cranes, elevators, and torque dynamometer test rigs can save energy from frequent run and stop, deceleration with high inertia load, and overhauling torque by using a regenerative power unit. One application saves 54% of the power used, $1017 per year.

03/13/2013


Figure 1 shows how regenerative energy is dissipated into heat loss by dynamic braking. Courtesy: Yaskawa America Inc.When an electric motor is driven by a variable frequency drive (VFD), electric power delivered to the motor is regenerated while the motor decelerates by applying negative torque to the motor shaft. Usually energy storage capacity inside the VFD is very limited so regenerative energy should be returned to the grid or quickly dissipated by a braking resistor. Otherwise, the dc bus will be overcharged and an over-voltage fault can occur. Dynamic braking resistors have been widely used to convert regenerated energy into heat loss because of simplicity and low installation cost, as illustrated in Figure 1. But a regenerative power unit provides a significant energy cost saving opportunity, especially in applications that require frequent run and stop, deceleration with high inertia load, and overhauling torque. Such applications include spindle drives, decanter centrifuges, hoists, cranes, elevators, and torque dynamometer test rigs. Electricity cost per kilowatt hour is getting more expensive. So it will be worthwhile to review the basics of regenerative units and understand estimated energy cost saving. Three types of regenerative power units are available in the U.S. market. Basic features and power topologies are explained and compared.

1. Regenerative converter

The regenerative converter is a cost-effective solution that can replace the dynamic braking transistor and resistor network. It absorbs excess regenerative energy from the VFD and returns it to the ac power source. Figure 2 illustrates the regenerative energy flow from a motor to the grid using a regenerative converter on the left, and detailed power circuit schematic with power switches on the right. During motoring, the VFD delivers power without the regenerative converter in the main power flow. So there is no conduction loss in the regenerative converter during motoring. The regenerative converter is activated when regenerative energy charges dc link capacitors of the VFD. The regenerative converter returns stored energy in the dc capacitors to the grid.

Figure 2 shows regenerative energy flow by the regenerative converter with a concept block diagram (left) and a power circuit schematic (right). Courtesy: Yaskawa America Inc.

The size of the regenerative converter is determined by the size of the VFD, regen power, and duty cycle. The 6-step pulse control method is used to keep the switching loss of power devices very low. For applications that require high duty cycle braking, the regenerative converter can significantly improve the system operating efficiency and reduce the cost of electricity [1-2].

2. Sinusoidal PWM converter

The sinusoidal pulse-width modulation (PWM) converter is a high-performance solution designed to regulate dc bus voltage under both motoring and regenerative power conditions. The grid side current waveform of the sinusoidal PWM converter is sinusoidal with very low PWM harmonic distortion, approximately 5% total harmonic distortion (THD). It is designed to meet the IEEE-519 standard. Input current is also controlled to synchronize with input grid voltage, which enables achieving unity input power factor. It is connected in series between the incoming power line and the VFD. An ac filter, such as an LCL filter [inductor (L)-capacitor (C)-inductor (L)], is used as an external component to reduce ac current harmonics.

Figure 3 shows regenerative energy flow with a sinusoidal PWM converter. The concept block diagram (left) illustrates the motoring and regenerative energy flow between the grid and a motor with a sinusoidal PWM converter. Actual power circuit schematic (r

The sinusoidal PWM converter in Figure 3 is ideal for applications that require very low current harmonic distortion to meet the IEEE-519 Harmonic Limits standard and have large overhauling loads or those that make frequent stops such as elevators, centrifuges, test stands, and winders. This can result in significantly reduced system operating costs of machinery by “re-cycling” the excess energy back to the power grid. The sinusoidal PWM converter package is highly efficient without the heat loss and mounting location problems associated with braking resistors. For reference, the unidirectional regenerative converter is a lower cost solution with a six-step waveform that does not provide IEEE-519 compliant current waveform.

(See additional explanations, more graphics and links on the next page.)


<< First < Previous Page 1 Page 2 Next > Last >>

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
October 2018
Complex upgrades for system integrators; Process control safety and compliance
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me