Compressed air concerns I have serious problems with some of the content of the article, "Recovery and reheat process simplifies compressed air drying" (PE, July 2000, p 82, File 4020).


Compressed air concerns

I have serious problems with some of the content of the article, "Recovery and reheat process simplifies compressed air drying" (PE, July 2000, p 82, File 4020). It might give a false impression to many users of compressed air.

The article talks of the changes in volume at different temperatures. The fact remains that the mass flow of air coming from the air compressor has not changed, only the volume at given conditions.

It is stated that air temperatures as high as 300 F can be obtained. While a small number of process applications may benefit from this figure, there are materials in most compressed air systems that would not be amenable to such a temperature, including O-rings and polycarbonate bowls. One certainly would not want an air supply at this temperature to be supplied to hand tools or through typical hoses.

Even 90-120 F coming from the reheater would not be maintained for long in a compressed air distribution system, with receivers and piping exposed to normal ambient conditions. Much of any benefit of the reheat would be lost by radiant cooling before it reached the points of use.

Most refrigerant-type dryers use the inlet air to reheat the dried air leaving the dryer, but this is limited by the temperature of the inlet air. This approach also precools the inlet air, reducing the dryer load.

A life cycle cost analysis should be done to determine if a reheat system could be justified.-David McCulloch Author's reply: The article "Recovery and reheat process simplifies compressed air drying" is about an efficient way to dry and reheat compressed air, as compared to a refrigerated dryer, and how the reheat system performs these functions.

The observation that mass flow remains constant and the volume changes with temperature is correct and is best illustrated in the article by Fig. 3 (below). This figure shows the changes in volume during the cooling and reheating conditions and indicates that the airflow rate is a constant 7100 scfm during this process. The point is the constant mass flow of air has a greater volume and will do more work when it is warmer. Work, resulting from the use of compressed air, is dependent upon the volume and pressure at the point of use. Hot air has a greater volume than cold air. Therefore, hot air will do more work at the same cost than cold air. According to Charles Law, if the pressure is held constant, the volume will vary directly as the absolute temperature. So if the pressure and power requirements are constant and the air is reheated, then its volume will increase.

Compressed air is used for a wide variety of applications with the most common use being for pneumatic controls and power tools. It is also used in many process-related applications. Examples are companies that use large volumes of compressed air to pneumatically convey product, pharmaceutical plants that use the air in the fermentation process to make drugs, the powder coatings industry is a large volume user, and glassmakers require large volumes of hot, dry air to manufacture glass. Reheat systems are in successful operation for compressed air systems in all of these applications.

Reheat systems can provide a dew point as low as 35 F, depending on the coolant available. Therefore, any increase in temperature, even to temperature near ambient conditions (about 70 F in a typical plant), will increase the compressed air volume and provide additional work at the same cost in power when compared to air at 35 F.

Each application has its own unique needs and will require different air outlet temperatures. The glass and pharmaceutical industries prefer hotter air, as compared to powder coatings applications or air for pneumatically conveying product. A reheat system is custom designed to meet those needs and provide the desired air outlet temperature. The typical application is for compressed air systems that require large volumes of dry, warm air and have flow rates greater than 500 scfm.

While not every compressed air system will require a reheat system, there are numerous applications that need large volumes of warm, dry air. A total cost analysis of a reheat system, taking into account the capital investment and operating expense, is a good way to demonstrate the merits of these systems.-Carl Kozacki, R.P. Adams Co., Buffalo, NY

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me