Proper equipment insulation helps power plant maintenance

Have a preventive plan for shutdowns to avoid costs, save time.

06/10/2016


The more a contractor can save the owner on a power plant insulation project through meticulous planning and follow-through, the better the relationship will become. Image: Courtesy Structsure Scaffold & InsulationUnnecessary shutdowns at power plants resulting in exponentially high costs both in terms of repair and lost hours are a constant concern for operators and managers. To avoid this kind of costly event from taking place, it is crucial that plant managers have an action plan for preventive maintenance during planned shutdowns. By having a detailed, effective plan during the anticipated shutdowns, operators can be confident that they have significantly reduced the odds of an unplanned outage.

One element of this plan should include replacing and/or installing the proper amount of insulation for the equipment operating inside the power plant. When properly insulated, benefits are quickly realized. These include some of the more obvious cost savings including energy efficiency. Operators and plant managers will also see improved equipment operating efficiency. There are also the benefits to the employees working on the plant floor.

With proper insulation, there will be significant heat reduction on the equipment itself, cutting down the risk of injury or burns to workers. There is also a reduction in unnecessary noise on the plant floor.

Planning

When installing insulation, there are several elements that managers must take into account. It begins with understanding the scope of the work that needs to be done and scheduling that work in an efficient, reliable and practical manner. Getting the proper specifications on the install should begin well before any job actually starts.

Most plants operate with a very specific maintenance budget, and this is important to understand and follow when managers begin planning and staging the materials they will need. The relationship between the contractor and the owner depends on transparency and efficiency. Extra steps in the installation process lead to extra costs. The more a contractor can save the owner through meticulous planning and follow-through, the better the relationship will become. The process begins with understanding and carefully outlining the specifications, along with the type of material that needs to be ordered.

After this is determined, a schedule of labor must be produced. In this schedule, it is important to take into consideration the time of year that the plant is planned for shutdown and install. Different times of the year will have different, specific challenges and limitations. For example, during the hot summer months, the scheduled hours for maintenance workers need to be incremental to allow for breaks so personnel can cool off and not be at risk of heat exhaustion. The correct specifications and applications of the installation are critical, to ensure that unnecessary work does not take place and time is not lost with work having to be redone. These are all factors that must be taken into account when scheduling the install.

Correct specifications

Understanding the correct insulation specifications for the power plant equipment also is important. If the equipment is underinsulated, it will lose heat-and the electric bill for the plant will rise. On the other hand, there is a point after which more insulation will not equate to greater cost savings. By adding more thickness, more money will be spent on materials and the job will end up costing more than is required.

Many power plants were built with less-than-optimal insulation specifications. The cost savings that were supposed to be realized by many power plants do not come through as suspected. Heat escaping certain applications in the plant is a common occurrence today, resulting in less energy efficiency and, in turn, higher costs for the plants. What is the cause of this miscalculation? Simply put, most systems in the plant can become extremely hot. The temperatures can reach up to and more than 1,000° F on various systems, such as the boilers, turbines, piping and vessels. Most systems contain single-layer applications of insulation. As the industry has learned, this is not the ideal specification for typical power plants. Today, it is more efficient to install a double layer of insulation instead of one thick layer to meet the proper thickness required.

Single vs. double layer

With a single layer, the heat rate is driven up because there are more open seams in a single layer for the heat to escape. It is similar to when a person is dressing for cold weather. It is better for the individual to put multiple layers of clothes on to more efficiently hold their body temperature. The concept of insulation works the same way. When there are fewer seams in the insulation, there is less chance for heat to escape.

Many insulators are now taking the required thickness of insulation and using two layers instead of one, resulting in heat savings. Additionally, by limiting the heat that is emanating from the different applications, workers can be more productive and limit the risk of injuries—such as burns—that could lead to lost time.

Double-layer applications also can save labor. When installing double-layer insulation, the project leader can order materials in different sizes to equal the required thickness. For example, boilers and duct systems have supports that run across the system. These supports can vary in thickness. If there is a scenario where the support is three inches tall and a thickness of five in. is required, it is more efficient to install double-layer installation. The installer needs three in. of insulation to rub up against the support and another two in. to run over the support. Instead of making precise cuts that can take more labor and result in higher costs for the facility, the installer can use double-layer insulation and order a 3 inch-thick piece along with a 2 inch-thick piece. Insulation is available in multiple thicknesses. This once again speaks to the importance of planning the scope of work and the materials needed in the planning stage.

Removable insulation

Another trend that is continually gaining steam is the installation of removable insulation pads for certain elements inside of a power plant. For equipment such as a power plant's valves, removable pads can be far more efficient for insulation. The key benefit of these pads is that it is easily removable and reusable, resulting in a drastic cut on man-hours. As opposed to installing a permanent insulation system, the costs and time associated with removing and reusing the pads are significantly less.

Workers can to take the pad off of the insulation blanket and reuse it multiple times without the system being compromised. To get the most return on investment on the installation of insulation during the scheduled power outages at a plant, proper planning is the key driver. Understanding the scope of work and keeping the line of communication open with the contractor will save the plant money in the long run.

Winston Saunders is the insulation manager at Structsure Scaffold & Insulation, a specialty scaffolding and insulation contractor.



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me