Proper cabling a critical choice for VFD systems

By integrating some logical steps into choosing the correct VFD cabling system, you can ensure many years of trouble-free service for your drives. The selection criteria for the proper cable system for VFD applications need to be understood in order to ensure a proper installation and operation.

02/21/2011


By integrating some logical steps into choosing the correct VFD cabling system, you can ensure many years of trouble-free service for your drives. The selection criteria for the proper cable system for VFD applications need to be understood in order to ensure a proper installation and operation.

The VFD cable should be able to withstand the operating conditions like repetitive 1,600 volt peak voltage spikes from low voltage IGBT drives and at the same time not deteriorate the performance of other drive system components. Peak voltages on a 460 V system can reach 1200 V to 1600 V, causing rapid breakdown of motor insulation, leading to motor failure. If this is left uncontrolled, insulation failure may occur.

The same peak voltages that damage the motor can also damage the cable. In the perfect cable power delivery system the net instantaneous current flowing in the total cable system should be zero. This includes all phase conductors, all ground conductors and shield. This can be achieved by a symmetrical cable.

Symmetrical cable

In a VFD installation the IGBT switches are in constant operation at high frequency and this produces an inverter output voltage with a PWM wave. This IGBT switching also causes a motor line to ground voltage, normally called a common mode voltage. Most ac drives, in addition to their normal three phase output voltages, create a fourth unintended voltage to ground, known as common mode voltage.

Common mode current is current that leaves a source and does not come back to the source. In most closed loop electrical circuits, most of the current returns to the source. However, there is a small amount of current that in any circuit is radiated and does not return.

The common mode voltages cause short high-frequency pulses of common mode current to flow in the safety earth circuits, and it is essential that the common mode currents return to the inverter without causing EMC-EMI problems in other equipment, and this means that the common mode currents must not flow in the safety earthing system.

The best and easiest way to do this is to use shielded VFD cables that are properly terminated and provide a low impedance path for common mode current to return to the inverter.

If symmetrical insulated grounding conductors and an overall EMI shield are not used, EMC-EMI problems are very likely to occur creating a electrically imbalanced cable. An electrically “balanced” cable is produced when the effective distance from all phases to ground is identical. VFD cable where multiple grounds are placed in all interstices under tight manufacturing tolerances improves phase impedance. Additionally, ground sizes combined with the shield offer a higher than normal ground conductor size. This provides low ground-return impedance that helps to minimize common mode currents.

At the motor end, IGBT PWM drives can sometimes create insulation breakdown between the phase windings because of high transient voltage peaking. End users notice reduced bearing life on motors soon after additions or upgrades to PWM drives. On inspection, minute pits similar to those seen in Figure 1 are discovered on inner and outer bearing races as well as on the motor bearings within a short period. Another observation that confirms the presence of a bearing current is a phenomenon known as fluting. Upon start-up of a motor an audible “groan” is usually heard coming from the motor that changes pitch and becomes quite noisy as the speed increases. Such a symptom usually points to bad motor bearings that have fluting damage as shown in Figure 2.

The incidence of damage caused by bearing currents has increased during the past few years because of variable speed drives with fast rising voltage pulses, high switching frequencies that can cause current pulses through the bearings and due to repeated discharging gradually erodes the bearing races.

To avoid motor bearing damage, it is essential to provide a proper path for high frequency and allow stray currents to return to the inverter frame without passing through the bearings. The magnitude of the currents can be reduced by using symmetrical VFD cables with proper terminations.

Benefits of Proper Grounding and Cabling

Standard equipment grounding practices are designed to provide a sufficiently low impedance path to protect people and equipment against system faults. A VFD can be effectively earthed at the high common mode current frequencies by using symmetrical VFD cables. A symmetrical arrangement of three-phase leads and three-ground conductors minimizes the net injected ground current into the drive system and reduces problems arising from noisy ground current from VFD cables that augments the problems of system performance and electronic reliability.

Terminating the shield is just as important as having a continuous shield path. VFD installations would benefit from watertight cable connectors that can provide a 360° electrical bonding of the copper tape shield and the armor.

Users should connect the copper tape shield to the connector body in a manner that it provides a 360° connection. The connector assembly also should be designed to prevent loosening of threads caused by vibration.

Alpa Shah, Director of Strategic Marketing and Sales, Service Wire Co. She can be reached at Alpa.Shah(at)servicewire.com



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2017 Top Plant.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
February 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
March 2018
SCCR, 2018 Maintenance study, and VFDs in a washdown environment.
Jan/Feb 2018
Welding ergonomics, 2017 Salary Survey, and surge protection
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
December 2017
Product of the Year winners, Pattern recognition, Engineering analytics, Revitalize older pump installations
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards
December 2017
PID controllers, Solar-powered SCADA, Using 80 GHz radar sensors

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Industrial Analytics
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
IIoT: Operations & IT
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me