Process engineers need new analytics awareness

Improved data management requires a new way of thinking as the Industrial Internet of Things (IIoT) allows process engineers to make sense of the enormous amounts of data that is now accessible to them.


Many process manufacturing owner-operators in this next phase of a digital shift have engaged in technology pilots to explore options for reducing costs, meeting regulatory compliance, and/or increasing overall equipment effectiveness (OEE). 

Despite this transformation, the adoption of advanced analytics tools still presents certain challenges. The extensive and complicated tooling landscape can be daunting, and many end users lack a fundamental understanding of process data analytics. Combined with a lack of awareness of the practical benefits that analytics offer, this leaves many engineers stuck in day-to-day tasks, using spreadsheets and basic trend analysis tools for the bulk of their daily analysis.

Connected IIoT and dataTechnologies that enable new ways of working and of doing business. Image courtesy: TrendMiner.

Today, factories are producing more data than ever, forming an Industrial Internet of Things (IIoT) that enables smart factories where data can be visualized from the highest level to the smallest detail. The key to this digital revolution is the network of connected sensors, actors, and machines in a plant generating trillions of samples per year. 

This digital revolution offers unprecedented opportunities for improving efficiency and real-time process management—but it also presents new challenges that require innovative thinking and solutions.

Technology has evolved rapidly in response to the scale of data generated, with systems for business intelligence and data lakes now an essential part of operational excellence. However, for many engineers little has changed. They use the same systems and experience few benefits from the digital transformation taking place in their plants as they are unable to directly access the insights this new data provides.

Complexities in analytics 

Engineers now face a complex landscape populated with a variety of analytics tools, all of which promise to make sense of the newly available data, including tools from traditional historians and manufacturing execution system (MES) vendors, generic big data systems such as Hadoop and independent analytics applications. These tools address a variety of business needs, but are not necessarily designed to meet the specific needs of engineers in the process industry.

The sheer number of business systems leads to issues with integration and increased reliance on IT and big data experts. The corporate analytics vision is often based on one big data lake for all data, and proof of concepts are launched to store finance data, marketing data, quality data and limited amounts of production data in such lakes. However, companies frequently struggle to fit in the massive time series data from processes in these exercises.

In response, many organizations create central analytics teams to address the most critical process questions affecting profitability. Data scientists create advanced algorithms and data models to combine data from multiple sources and deliver insights to optimize production processes. These analytics experts lead the way in translating time series data into actionable information.

While the insights gained from analytics teams are essential, this approach alone is insufficient to enable engineers to leverage analytics in their daily tasks. Often engineers are time-poor, with little opportunity to learn new tools, and they are more concerned with meeting the immediate needs of the plant than the promise of new and perhaps unproven technologies. They may be skeptical that they will gain practical benefits from investing time in analytics systems. If past analytics projects have failed to meet their expectations, there may also be frustration and disappointment. With the pressing need to ensure optimal processes, it is natural that they will revert to their current systems and tools as proven ways to get the job done.

Building the perfect beast Analytics complexity vs. Personal analytics maturity level. Image courtesy: TrendMiner.

Just as technology has evolved to create connected plants, so engineers must be empowered to manage these factories. This is a critical shift in business culture as the entire organization must be educated and made aware of the potential of analytics as it applies to their role. 

Instead of relying solely on a central analytics team that owns all the analytics expertise, subject matter experts such as process engineers should be empowered to answer their own day-to-day questions. Not only will this spread the benefits to the engineers involved in process management, it will also free the data scientists to focus on the most critical business issues.

Enabling engineers does not mean asking them to become data scientists—it means providing them with access to the benefits of process data analytics. Process engineers will not (easily) become data scientists because the education background is different (computer science versus chemical engineering). However, they can become analytics-aware and enabled. 

By bringing engineers closer in their understanding of analytics, they can solve more day-to-day questions independently and enhance their own effectiveness. They will in turn provide their organizations with new insights based on their specific expertise in engineering. This delivers value to the owner-operator at all levels of the organization and leverages human resources more efficiently.

To bring an organization to this modern approach requires the addition of a self-service analytics platform tailored to the subject matter expert users’ needs and the education of users. 

Self-service analytics tools are designed with end users in mind. They incorporate robust algorithms and familiar interfaces to maximize ease of use without requiring in-depth knowledge of data science. No model selection, training, or validation is required; instead users can query information directly from their own process historians and get one-click results. Immediate access to answers encourages adoption of the analytics tool as the value is proven instantly: precious time is saved and previously hidden opportunities for improvement are unlocked. 

This self-service approach to analytics results in heightened efficiency and greater comfort with use of analytics information for the engineers, allows data scientists to focus on the questions most critical to the entire organization, and delivers enhanced profitability for owner-operators.

Thomas Dhollander is vice president of products and co-founder of TrendMiner.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2017 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
SCCR, 2018 Maintenance study, and VFDs in a washdown environment.
Welding ergonomics, 2017 Salary Survey, and surge protection
2017 Top Plant winner, Best practices, Plant Engineering at 70, Top 10 stories of 2017
Product of the Year winners, Pattern recognition, Engineering analytics, Revitalize older pump installations
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Setting internal automation standards
Knowing how and when to use parallel generators
PID controllers, Solar-powered SCADA, Using 80 GHz radar sensors

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me