Plasma cutting boosts maintenance productivity

Research into and experience with air plasma cutting has led many companies to the conclusion that it offers a reliable, efficient, high-quality, low-cost method of metal cutting.


Research into and experience with air plasma cutting has led many companies to the conclusion that it offers a reliable, efficient, high-quality, low-cost method of metal cutting. The use of plasma cutting for production and maintenance has expanded greatly in recent years in both the number of industries and variety of applications where it is used. This trend has been driven in large part by the advances in solid-state electronics technology that have affected the plant in areas ranging from lighting to motor speed control.


The origin of plasma arc cutting dates back to World War II. As part of the war effort, the U.S. government searched for ways to improve the welding process. This fundamental research resulted in a new process that used electric current surrounded by an inert gas shield to produce a superior weld.

This new process, called tungsten inert gas (TIG), gave rise to a whole new industry sector and became a mainstay in industrial welding. A few years later, scientists within the new industry began to tinker with the process, hoping for improvements that would mean greater performance.

Their optimism was well founded. They learned that constricting the orifice through which the gas flows causes the arc heat to increase dramatically. In addition, the increased velocity of the gas actually removes molten metal. To their surprise, the result was not an improved method of joining metal, but rather a highly effective way of removing it. Thus, the plasma arc cutting process was born.

Plasma basics

Science educators around the world teach students about the three familiar states of matter: solid, liquid, and gas. In each state, beginning with solid, energy can be added to create a new state of matter. The most common example is water. We know that water in its solid form is ice.

When heat energy is added, the solid is transformed into a liquid. The addition of even more heat energy transforms the liquid into a gas (water vapor or steam).

The plasma state takes this natural progression one step further and is generally thought of as a fourth state of matter. With the introduction of still greater amounts of energy to the gaseous state, gas molecules break into atoms and many of the atoms lose an electron, a process called ionization. This hot, ionized gas, called a plasma, is electrically conductive.

Older methods vs air plasma

Oxyfuel cutting is often referred to in the same breath as plasma cutting. Oxyfuel cutting employs a chemical reaction, heating steel to kindling temperature with a fuel like acetylene and then injecting a stream of pure oxygen to oxidize the steel -- an exothermic reaction that both melts and literally burns the steel. Flame temperatures are typically in the 5000-6000 F range. However, this reaction occurs only in ferrous metals, limiting the process primarily to steel.

The prime attraction is low initial investment in simple equipment. Because the oxyfuel process doesn't lend itself well to cutting sheet metal, mechanical means such as shears or nibblers are often employed.

Plasma cutting, which is an electrical/thermal process, utilizes a highly constricted arc surrounded by a swirled column of ionized gas. This combination results in high arc current density, as well as increased voltage and heat. Arc temperatures often reach well into the 30,000-F range. At these temperatures, there isn't a need for a chemical reaction as the arc melts the metal away at very high speeds.

Plasma cutting systems are available in mechanized, handheld, or table-mounted systems. While handheld systems have the edge in portability, the tabletop or mechanized systems are useful for volume operations where cut consistency and productivity are important.

Plasma's most obvious advantage is its ability to cut all electrically conductive metals, including stainless steel and aluminum. But, the primary reason for plasma cutting's emerging preeminence in steel cutting is its speed and productivity.

The preheat delay is eliminated in plasma cutting, and cutting speeds can be anywhere from 100%-700% faster than oxyfuel, depending on the size of the machine. Typical handheld plasma cut speeds on machines recommended for cutting 1/2-in. steel range from 20-30 in./min.

Users of plasma are also quick to point out that the absence of a preheat cycle results in less heat transfer to the workpiece, which can reduce warping and twisting of the metal. Plasma cutters, as opposed to their oxyfuel counterparts, also leave a smaller heat affected zone. This translates into stronger welds at the edge of the cut.

When plasma cutting systems were first introduced, the primary objection to their use was that they produced only crude, low-quality cuts. Because the technology has rapidly advanced, plasma now produces cut quality comparable and sometimes superior to oxyfuel.

Because of these significant speed advantages, input costs per foot of metal cut are also 40-90% lower. And, for most hand-operated systems, all that's required is electric power and compressed air. The only items consumed in air plasma cutting are the torch electrode and nozzle, or "tip."

The sheer versatility of handheld plasma is a tremendous advantage. Most handheld plasma torches can be set directly on the workpiece and dragged, virtually eliminating the need to hold a difficult "stand-off." This feature increases cutting precision, as templates are easily utilized. It also allows for easy setup and repeat, production-type jobs.

Another important feature of handheld plasma systems is their ability to remove metal at the surface of the workpiece, or "gouge." Within minutes, the plasma torch can be configured for gouging by simply replacing the standard nozzle with a wider, lower-velocity type. Gouging, in most industrial applications, is primarily used to remove old or broken welds. The gouging process is far more efficient than other tedious and often labor-intensive manual methods.

Portability is an essential aspect of a system's overall value. Handheld units generally weigh 30-90 lb and can be easily equipped with an optional wheel kit. Typically, these units also come with either a 25 or 50-ft torch lead. This feature, combined with the power supply mobility, allows for plasma cutting just about anywhere power and air are available.

Finally, users will be hard pressed to find another technology that is as easy to learn as plasma cutting. Hunter Herman, who teaches welding and cutting processes at community centers and universities, says "At all levels, I've found that students can produce good cuts within just a few minutes of being introduced to the process. Satisfaction comes quickly, increasing confidence, use, and proficiency. There's nowhere near the complexity that's involved in welding training."

Whether you are cutting HVAC ductwork, steel plate, or pipe, the handheld plasma unit is a "go anywhere" system capable of cutting metal from thin gauge to 2-in. thick.

Key concepts

Metal cutting methods have changed.

Plasma arc cutting has replaced oxyfuel and mechanical methods in numerous situations.

Compact, portable plasma equipment is ideal for many maintenance tasks


What to look for in a plasma system

Plasma systems are often rated according to their output current, with typical hand cutting systems operating in the 20-200 A range. Manufacturers generally provide a "maximum thickness capacity" rating for their systems, but these numbers reflect the top end of the machine's capability. To avoid frustration with slow, poor-quality cuts, potential users should determine the primary thickness to be cut and then purchase a machine with rated maximum capacity of approximately twice that thickness.

Here are three questions plasma buyers should ask before buying a system.

1. What will be the primary types and frequency of use? The thickness range to be cut is the primary determinant of machine capacity needed. However, information on frequency of use is also important, because it determines desirable cutting speed. A high number of arc hours per day usually means higher cutting speeds can save money.

2. What are the comparative operating costs of the machine? Labor and input energy costs are about the same for machines of comparable ratings. The other cost area is consumables. Most plasma systems "consume" electrodes and nozzles through the course of cutting. The life spans of these consumables often differ significantly from machine to machine, as do their purchase costs.

3. Which machine features are "must have," and which are "nice to have?" Features that come as standard on one machine may be options on another and may not even be available on a third. Above all, take the time to "test drive" each of the different alternatives, especially since there are no rating standards governing the industry.

More info

The author will answer technical questions concerning this article. Mr. Kanda is available at 800-643-0030, ext. 536; e-mail: steve.kanda@ The company web site is

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me