Permanent magnet motors outperform induction motors in many applications

Permanent magnet synchronous motors offer significant advantages on high-energy-consuming and high-dynamic applications, compared to induction motors. See table, photo gallery.


This torque motor significantly reduces system components and wear: Permanent magnet motors offer various design integration options coupled with advanced performance features for greater energy-efficiency, substantial component reduction, and significantPermanent magnetic synchronous motors have been in use on machine tools and other production machinery for many years, owing to their reliable performance, durability, relatively low cost, and electrical stability. These motors have been the standard in the machine tool industry for many decades, used on the spindle, worktable rotation, ways and part articulation, in both rotary and linear applications of controlled motion. With the advent of the machine tool robot for materials handling, workpiece and tooling changes, high-precision load and unload functions, and more, the use of these motors has grown exponentially over the years. Behind the cutting theater, they’re also found on the chip conveyor, hydraulic manifold, oil reservoir, and coolant pumps.

Likewise, in the production machine realm, plastics and rubber molding and extrusion, papermaking, packaging, textiles, ceramic, glass, woodworking, and countless other pieces of equipment have utilized these motors for motion control.

Table compares features of a permanent magnet spindle motor and induction (asynchronous) motor. Courtesy: Siemens

Courtesy: Siemens, Control Engineering

Compact, high torque density

Further, the essential operational principle of a permanent magnet in the rotor assembly, generating a steady magnetic field instead of the short-circuit current found on asynchronous induction motor designs, has yielded many advantages for the machine designer, builder, and aftermarket. These advantages include compact form with high torque density and less weight, higher continuous torque over a wider range of speeds, lower rotor inertia, higher dynamic performance under load, higher operational efficiencies with no magnetizing current, and the corresponding absence of heat due to current in the rotor, low torque ripple effect, more robust performance compared to dc motors, good cos phi (a European term for power factor) and ultimately, better drive utilization.

Water-cooled torque motor: Permanent magnet motors offer various design integration options coupled with advanced performance features for greater energy-efficiency, substantial component reduction, and significantly smaller footprints in today’s machine

The challenges have been, of course, escalating costs of raw materials due to certain economic factors in the world market, though recent discoveries of rare earth magnets (REM) in the U.S. and elsewhere may impact that situation greatly in the future. Plus, more technical aspects such as limited speed ranges in field applications and degradation due to counter voltage created by the magnets, where normally an encoder for commutation is deemed necessary, along with the inevitable limit overload condition, are being continuously addressed by the manufacturers.

New PM motor applications

New market areas are emerging, however, where the use of permanent magnet (PM) motors is showing great promise. These applications involve the use of PM motors for increasing machine productivity with better operational efficiencies.

Air-cooled torque motor: Permanent magnet motors offer various design integration options coupled with advanced performance features for greater energy-efficiency, substantial component reduction, and significantly smaller footprints in today’s machine dr

One PM motor example is the servo pump, where a mechatronic analysis concluded substantial energy savings and operational improvements could be realized, with the additional benefit of environmental upsides, from the application of a PM motor on the hydraulic oil reservoir, replacing a variable capacity pump with a servo. Essentially, the pump motor runs only when the conditions of the machine mechanics warrant. No more was the long-standing presumption of continuous motor operation necessary. By use of a PM motor and direct drive technology, up to 50% savings are being realized on new and retrofit machines, with the obvious additional advantage of eliminating mechanical components, such as the gearbox.

Exploded view of rotary torque motor. Such a motor is ideal for high torque at low speed on various machinery: Permanent magnet motors offer various design integration options coupled with advanced performance features for greater energy-efficiency, substPermanent magnet synchronous torque motors typically have 30%-60% higher torque capacity and 30% better torque utilization with faster acceleration and deceleration, compared to asynchronous induction type motors, and this has proven advantageous in the field, particularly with machine tools and other metalworking production equipment where the rapid traverse function is critical to maintaining higher productivity.

The German word “Nebenzeit” describes the concept of downtime and, in today’s fast-paced, often unattended machining applications, elimination of that condition is an absolute must. There is also significantly higher response and the absence of the “slip” phenomenon with PM motors.

Among applications for advanced permanent magnetic motors are printing presses. Courtesy: SiemensIn the higher power ranges today, these motors are also showing a significantly longer use life, owing to the greater degree of rotor tension compensation. In other words, the reduction of backlash (hysteresis) and the maintaining of precise position are better achieved, whether under load or not. From the magnetic perspective, this condition derives from the combination of a larger air gap and smaller radial magnetic forces, with lower inertia moment and high short-term overload capacity with maintenance of desired torque.

Converting equipment uses advanced permanent magnetic motors. Courtesy: SiemensDrive technology improvements have likewise lobbied for increased use of PM motors in applications, as spindle motion precision and accuracy in a machine tool, for example, are directly dependent on the intelligence in the drive. Likewise, the complex current calculations for higher speed and rotor pole pair position identification are being made in the drive for use with simpler encoders or even encoderless configurations in the machine.

Harald Poesch, product manager for motion control motors in the USA for Siemens Industry, holds a degree in communications engineering from the University of Applied Science in Cologne, Germany, and has worked for Siemens since 1999, serving as an applicaUse of the asynchronous induction motor is far from obsolete, especially with the advancements in motor system elements, such as variable frequency drives and inverters, used on various phase configurations. Even so, advancements in magnetics configuration and the higher levels of intelligence in drives technology are opening new applications for PM magnets daily.

Somewhere, both Farraday and Tesla are smiling.

- Harald Poesch is product manager for motion control motors, USA, Siemens Industry Inc. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering and Plant Engineering, 

Applications for advanced permanent magnetic motors include machine tool rotary tables. Courtesy: SiemensSchematics show the configuration of asynchronous (induction) motor (on left) and permanent magnetic synchronous motor designs. As the technology has evolved, larger motors are being produced in the PM design. Table above compares the two designs. Courtesy: SiemensNewly developed mechatronic applications such as this integrated electrohydraulic pump motor, as used on a plastics injection molding machine, are yielding significant energy savings, short payback, and quieter operational conditions.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me