Open architecture digital PMSM servodrive control

Milling machine axis control system uses real-time open architecture and digital permanent magnet synchronous motor (PMSM) control, based on a high-performance PXI platform. Updated with reader comment Feb. 5.


A real-time open architecture milling machine axis control system includes vibro-acoustic signals that occur during the milling process. A laboratory stand demonstrated motor position with a field-oriented control algorithm. A digital signal processing technique of dynamic vibration and acoustic pressure signals was proposed to compensate for control milling process nonlinearity. Using field programmable gate array (FPGA) technology improves positioning thanks to increased sampling rates of controlling signals in relation to commonly implemented solutions. Motor position readings via absolute encoder were ensured to provide the best measurement resolution. Modularity and flexibility in the test stand maintain high quality.

Figure 1 shows a conventional cascade position control loop for electric feed drives for CNC systems. Courtesy: West Pomeranian University of Technology, Control Engineering Poland

Most control loops for electric feed drives used in computer numerical control (CNC) machines for industry are closed architecture systems. That means they were designed in a way that prevents users from making changes in the controlling algorithms of the device. Conventional cascade position control loops for electric feed drives used in CNC systems have limitations that slow the development of new solutions.

Recently, several CNC systems producers have offered quasi-open architecture machines, though these still have not met expectations of end users. Real-time open architecture control systems allow users to modify component algorithms to improve work parameters of the CNC machine to the top level of its functional model. For these reasons, there’s a lot of research on this topic. The completely new and original approach described here implements measured and digitally preprocessed signals within the control loop of the digital servodrive of the milling machine feed-drive module.

Laboratory stand

The integrated laboratory stand was based on National Instruments hardware and software solutions. Control, measurements, and digital signal processing algorithms were implemented on a PXI platform equipped with specifically dedicated modules. Position measurements of the motor were made via an EnDat 2.1 encoder module with EnDat 2.1 interface (developed by Heidenhain); vibrations and acoustic pressure signals were obtained with a high sampling rate using an NI 9234 module. A field-oriented control algorithm was executed on FPGA target (NI PXI 7854R), which helps maintain high efficiency of the code. The motor was controlled by an NI 9502 motor drive module, capable of 4 A continuous current output to drive three-phase permanent magnet synchronous motors (PMSM). The control and measuring system was connected with an autonomic one-axis feed drive to perform a series of tests.

Sound, vibration in feed drive control loop

Vibrations are an integral part of every dynamic system. They appear in feed drive for many reasons, for example: rotational speed of the servodrive, structural vibrations, and so on.  Feed drives are used to position the machine tool components carrying the cutting tool and workpiece to the desired location; hence their positioning accuracy and speed determine the quality and productivity of machine tools. For these reasons, it is critical to diagnose the moment and cause of their formation. Vibration monitoring is one of the most often used methods in machine diagnostics due to its relatively low cost and simplicity of implementation.

Figure 2 is a picture of the integrated laboratory stand. Courtesy: West Pomeranian University of Technology, Control Engineering Poland

The mechanical energy of a device transforms into acoustic energy when it contacts the air. The sound signals measured closest to a machine reveal information about the state of the process being performed. To acquire acoustic pressure signals, directional microphones are most often used. Due to the relatively low frequency band related to the axis feed drive, sound signals can be easily measured even with nonspecialized devices.

Sound and vibration measurements often are used in monitoring systems of industrial CNC machines. Their main advantage is cost in relation to the diagnostic information contained in these signals. Identification of resulting vibrations helps to improve the positioning accuracy of feed drives; acoustic pressure signals can diagnose abnormal device functionality.

Diagnostic signals for electric feed drives

The task of the digital signal processing (DSP) block added to the conventional cascade position control loop for the feed drive algorithm is to calculate extra steering signals for one/several/every regulator or setpoint value. Measurements taken during operation of the device are processed with DSP methods, and calculations both in time and frequency domain are made. Due to the former identification of parameters and behavior of the axis feed drive, abnormal conditions and unwanted states of work are known. Based on that knowledge, a special algorithm monitors sound and vibration signals from the device and calculate additional control signals for regulators when needed.

Figure 3 shows the measured vibration signal in time (left) and in frequency domain (right). Courtesy: West Pomeranian University of Technology, Control Engineering Poland

Algorithms were implemented in the FPGA module to execute the control loop in a deterministic way and as quickly as possible, which creates a real-time system. A field-oriented control (FOC) algorithm for the servodrive was used for this high-end application. FOC maintains high efficiency over a wide operating range and allows for precise dynamic control of speed and torque. Correction signals were formed based on root-mean-square (RMS) calculations and fast Fourier transform (FFT) and power spectral density (PSD) algorithms of analog measurements of sound and vibration quantities. Adequate additive signals were put into each controller equal in time to control loop execution.

Figure 4 shows the feed drive control loop position with additional digital signal processing (DSP) block. Courtesy: West Pomeranian University of Technology, Control Engineering Poland

Future work: System robustness

A real-time open architecture milling machine axis control system included vibro-acoustic signals that occur during the milling process to test the possibility of improving control loop execution, compared to conventional solutions. Additional signals were calculated based on sound and vibration measurements taken to help maintain a high quality of regulation. FPGA-based execution of algorithms provided high sampling rates and determinism. The purpose of the integrated laboratory stand was to prove the usefulness of correction block implementation for traditional solutions. Future work will be made in the field of improving system robustness. 

- Krzysztof Pietrusewicz, DSc, is an assistant professor at West Pomeranian University of Technology, Szczecin. His work includes robust digital control of CNC feed-drive PMSM/PMLM-based modules. Paweł Waszczuk, Msc, is a PhD student there. His PhD thesis examines the problem of integrating correcting functionalities for robust control of digital servodrives. Both contribute to Control Engineering Poland. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering,

ONLINE extras

Read more about the EnDat interface.

Reader question about openness and author reply - Added Feb. 5

A reader asked if National Instruments hardware and software can be considered as “open.” Krzysztof Pietrusewicz, one of the authors, replied, in part, that for a large number of milling machines, at present, it seems unlikely that a machine builder would use a National Instruments architecture for the control system. However, “as a researcher, I consider the NI system open because:

1) It can be freely programmed (of course with the use of NI LabVIEW).

2) Innovative solutions can be simply implemented in the area of integration of on-line DSP and condition monitoring within the motion control system. (We have patented this approach here.)

3) Hardware can be developed anyone (this option can be expensive, but you can simply develop your own NI CompactRIO measurement modules).”

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me